MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axsegcon Structured version   Visualization version   GIF version

Theorem axsegcon 28693
Description: Any segment ๐ด๐ต can be extended to a point ๐‘ฅ such that ๐ต๐‘ฅ is congruent to ๐ถ๐ท. Axiom A4 of [Schwabhauser] p. 11. (Contributed by Scott Fenton, 4-Jun-2013.)
Assertion
Ref Expression
axsegcon ((๐‘ โˆˆ โ„• โˆง (๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘)) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘))) โ†’ โˆƒ๐‘ฅ โˆˆ (๐”ผโ€˜๐‘)(๐ต Btwn โŸจ๐ด, ๐‘ฅโŸฉ โˆง โŸจ๐ต, ๐‘ฅโŸฉCgrโŸจ๐ถ, ๐ทโŸฉ))
Distinct variable groups:   ๐‘ฅ,๐‘   ๐‘ฅ,๐ด   ๐‘ฅ,๐ต   ๐‘ฅ,๐ถ   ๐‘ฅ,๐ท

Proof of Theorem axsegcon
Dummy variables ๐‘˜ ๐‘ ๐‘ก ๐‘– are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axsegconlem1 28683 . . . . 5 ((๐ด = ๐ต โˆง ((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘)) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘)))) โ†’ โˆƒ๐‘ฅ โˆˆ (๐”ผโ€˜๐‘)โˆƒ๐‘ก โˆˆ (0[,]1)(โˆ€๐‘– โˆˆ (1...๐‘)(๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘ก) ยท (๐ดโ€˜๐‘–)) + (๐‘ก ยท (๐‘ฅโ€˜๐‘–))) โˆง ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ตโ€˜๐‘–) โˆ’ (๐‘ฅโ€˜๐‘–))โ†‘2) = ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ถโ€˜๐‘–) โˆ’ (๐ทโ€˜๐‘–))โ†‘2)))
21ex 412 . . . 4 (๐ด = ๐ต โ†’ (((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘)) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘))) โ†’ โˆƒ๐‘ฅ โˆˆ (๐”ผโ€˜๐‘)โˆƒ๐‘ก โˆˆ (0[,]1)(โˆ€๐‘– โˆˆ (1...๐‘)(๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘ก) ยท (๐ดโ€˜๐‘–)) + (๐‘ก ยท (๐‘ฅโ€˜๐‘–))) โˆง ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ตโ€˜๐‘–) โˆ’ (๐‘ฅโ€˜๐‘–))โ†‘2) = ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ถโ€˜๐‘–) โˆ’ (๐ทโ€˜๐‘–))โ†‘2))))
3 simprll 776 . . . . . 6 ((๐ด โ‰  ๐ต โˆง ((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘)) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘)))) โ†’ ๐ด โˆˆ (๐”ผโ€˜๐‘))
4 simprlr 777 . . . . . 6 ((๐ด โ‰  ๐ต โˆง ((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘)) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘)))) โ†’ ๐ต โˆˆ (๐”ผโ€˜๐‘))
5 simpl 482 . . . . . 6 ((๐ด โ‰  ๐ต โˆง ((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘)) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘)))) โ†’ ๐ด โ‰  ๐ต)
6 simprr 770 . . . . . 6 ((๐ด โ‰  ๐ต โˆง ((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘)) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘)))) โ†’ (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘)))
7 eqid 2726 . . . . . . . 8 ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2) = ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)
8 eqid 2726 . . . . . . . 8 ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2) = ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)
9 eqid 2726 . . . . . . . 8 (๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)))) = (๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2))))
107, 8, 9axsegconlem8 28690 . . . . . . 7 (((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ด โ‰  ๐ต) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘))) โ†’ (๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)))) โˆˆ (๐”ผโ€˜๐‘))
117, 8axsegconlem7 28689 . . . . . . 7 (((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ด โ‰  ๐ต) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘))) โ†’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) / ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)))) โˆˆ (0[,]1))
127, 8, 9axsegconlem10 28692 . . . . . . 7 (((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ด โ‰  ๐ต) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘))) โ†’ โˆ€๐‘– โˆˆ (1...๐‘)(๐ตโ€˜๐‘–) = (((1 โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) / ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))))) ยท (๐ดโ€˜๐‘–)) + (((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) / ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)))) ยท ((๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2))))โ€˜๐‘–))))
137, 8, 9axsegconlem9 28691 . . . . . . 7 (((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ด โ‰  ๐ต) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘))) โ†’ ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ตโ€˜๐‘–) โˆ’ ((๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2))))โ€˜๐‘–))โ†‘2) = ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ถโ€˜๐‘–) โˆ’ (๐ทโ€˜๐‘–))โ†‘2))
14 fveq1 6884 . . . . . . . . . . . . 13 (๐‘ฅ = (๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)))) โ†’ (๐‘ฅโ€˜๐‘–) = ((๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2))))โ€˜๐‘–))
1514oveq2d 7421 . . . . . . . . . . . 12 (๐‘ฅ = (๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)))) โ†’ (๐‘ก ยท (๐‘ฅโ€˜๐‘–)) = (๐‘ก ยท ((๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2))))โ€˜๐‘–)))
1615oveq2d 7421 . . . . . . . . . . 11 (๐‘ฅ = (๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)))) โ†’ (((1 โˆ’ ๐‘ก) ยท (๐ดโ€˜๐‘–)) + (๐‘ก ยท (๐‘ฅโ€˜๐‘–))) = (((1 โˆ’ ๐‘ก) ยท (๐ดโ€˜๐‘–)) + (๐‘ก ยท ((๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2))))โ€˜๐‘–))))
1716eqeq2d 2737 . . . . . . . . . 10 (๐‘ฅ = (๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)))) โ†’ ((๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘ก) ยท (๐ดโ€˜๐‘–)) + (๐‘ก ยท (๐‘ฅโ€˜๐‘–))) โ†” (๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘ก) ยท (๐ดโ€˜๐‘–)) + (๐‘ก ยท ((๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2))))โ€˜๐‘–)))))
1817ralbidv 3171 . . . . . . . . 9 (๐‘ฅ = (๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)))) โ†’ (โˆ€๐‘– โˆˆ (1...๐‘)(๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘ก) ยท (๐ดโ€˜๐‘–)) + (๐‘ก ยท (๐‘ฅโ€˜๐‘–))) โ†” โˆ€๐‘– โˆˆ (1...๐‘)(๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘ก) ยท (๐ดโ€˜๐‘–)) + (๐‘ก ยท ((๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2))))โ€˜๐‘–)))))
1914oveq2d 7421 . . . . . . . . . . . 12 (๐‘ฅ = (๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)))) โ†’ ((๐ตโ€˜๐‘–) โˆ’ (๐‘ฅโ€˜๐‘–)) = ((๐ตโ€˜๐‘–) โˆ’ ((๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2))))โ€˜๐‘–)))
2019oveq1d 7420 . . . . . . . . . . 11 (๐‘ฅ = (๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)))) โ†’ (((๐ตโ€˜๐‘–) โˆ’ (๐‘ฅโ€˜๐‘–))โ†‘2) = (((๐ตโ€˜๐‘–) โˆ’ ((๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2))))โ€˜๐‘–))โ†‘2))
2120sumeq2sdv 15656 . . . . . . . . . 10 (๐‘ฅ = (๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)))) โ†’ ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ตโ€˜๐‘–) โˆ’ (๐‘ฅโ€˜๐‘–))โ†‘2) = ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ตโ€˜๐‘–) โˆ’ ((๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2))))โ€˜๐‘–))โ†‘2))
2221eqeq1d 2728 . . . . . . . . 9 (๐‘ฅ = (๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)))) โ†’ (ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ตโ€˜๐‘–) โˆ’ (๐‘ฅโ€˜๐‘–))โ†‘2) = ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ถโ€˜๐‘–) โˆ’ (๐ทโ€˜๐‘–))โ†‘2) โ†” ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ตโ€˜๐‘–) โˆ’ ((๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2))))โ€˜๐‘–))โ†‘2) = ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ถโ€˜๐‘–) โˆ’ (๐ทโ€˜๐‘–))โ†‘2)))
2318, 22anbi12d 630 . . . . . . . 8 (๐‘ฅ = (๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)))) โ†’ ((โˆ€๐‘– โˆˆ (1...๐‘)(๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘ก) ยท (๐ดโ€˜๐‘–)) + (๐‘ก ยท (๐‘ฅโ€˜๐‘–))) โˆง ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ตโ€˜๐‘–) โˆ’ (๐‘ฅโ€˜๐‘–))โ†‘2) = ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ถโ€˜๐‘–) โˆ’ (๐ทโ€˜๐‘–))โ†‘2)) โ†” (โˆ€๐‘– โˆˆ (1...๐‘)(๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘ก) ยท (๐ดโ€˜๐‘–)) + (๐‘ก ยท ((๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2))))โ€˜๐‘–))) โˆง ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ตโ€˜๐‘–) โˆ’ ((๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2))))โ€˜๐‘–))โ†‘2) = ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ถโ€˜๐‘–) โˆ’ (๐ทโ€˜๐‘–))โ†‘2))))
24 oveq2 7413 . . . . . . . . . . . . 13 (๐‘ก = ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) / ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)))) โ†’ (1 โˆ’ ๐‘ก) = (1 โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) / ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))))))
2524oveq1d 7420 . . . . . . . . . . . 12 (๐‘ก = ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) / ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)))) โ†’ ((1 โˆ’ ๐‘ก) ยท (๐ดโ€˜๐‘–)) = ((1 โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) / ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))))) ยท (๐ดโ€˜๐‘–)))
26 oveq1 7412 . . . . . . . . . . . 12 (๐‘ก = ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) / ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)))) โ†’ (๐‘ก ยท ((๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2))))โ€˜๐‘–)) = (((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) / ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)))) ยท ((๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2))))โ€˜๐‘–)))
2725, 26oveq12d 7423 . . . . . . . . . . 11 (๐‘ก = ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) / ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)))) โ†’ (((1 โˆ’ ๐‘ก) ยท (๐ดโ€˜๐‘–)) + (๐‘ก ยท ((๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2))))โ€˜๐‘–))) = (((1 โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) / ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))))) ยท (๐ดโ€˜๐‘–)) + (((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) / ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)))) ยท ((๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2))))โ€˜๐‘–))))
2827eqeq2d 2737 . . . . . . . . . 10 (๐‘ก = ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) / ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)))) โ†’ ((๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘ก) ยท (๐ดโ€˜๐‘–)) + (๐‘ก ยท ((๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2))))โ€˜๐‘–))) โ†” (๐ตโ€˜๐‘–) = (((1 โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) / ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))))) ยท (๐ดโ€˜๐‘–)) + (((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) / ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)))) ยท ((๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2))))โ€˜๐‘–)))))
2928ralbidv 3171 . . . . . . . . 9 (๐‘ก = ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) / ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)))) โ†’ (โˆ€๐‘– โˆˆ (1...๐‘)(๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘ก) ยท (๐ดโ€˜๐‘–)) + (๐‘ก ยท ((๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2))))โ€˜๐‘–))) โ†” โˆ€๐‘– โˆˆ (1...๐‘)(๐ตโ€˜๐‘–) = (((1 โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) / ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))))) ยท (๐ดโ€˜๐‘–)) + (((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) / ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)))) ยท ((๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2))))โ€˜๐‘–)))))
3029anbi1d 629 . . . . . . . 8 (๐‘ก = ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) / ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)))) โ†’ ((โˆ€๐‘– โˆˆ (1...๐‘)(๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘ก) ยท (๐ดโ€˜๐‘–)) + (๐‘ก ยท ((๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2))))โ€˜๐‘–))) โˆง ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ตโ€˜๐‘–) โˆ’ ((๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2))))โ€˜๐‘–))โ†‘2) = ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ถโ€˜๐‘–) โˆ’ (๐ทโ€˜๐‘–))โ†‘2)) โ†” (โˆ€๐‘– โˆˆ (1...๐‘)(๐ตโ€˜๐‘–) = (((1 โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) / ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))))) ยท (๐ดโ€˜๐‘–)) + (((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) / ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)))) ยท ((๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2))))โ€˜๐‘–))) โˆง ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ตโ€˜๐‘–) โˆ’ ((๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2))))โ€˜๐‘–))โ†‘2) = ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ถโ€˜๐‘–) โˆ’ (๐ทโ€˜๐‘–))โ†‘2))))
3123, 30rspc2ev 3619 . . . . . . 7 (((๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)))) โˆˆ (๐”ผโ€˜๐‘) โˆง ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) / ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)))) โˆˆ (0[,]1) โˆง (โˆ€๐‘– โˆˆ (1...๐‘)(๐ตโ€˜๐‘–) = (((1 โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) / ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))))) ยท (๐ดโ€˜๐‘–)) + (((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) / ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)))) ยท ((๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2))))โ€˜๐‘–))) โˆง ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ตโ€˜๐‘–) โˆ’ ((๐‘˜ โˆˆ (1...๐‘) โ†ฆ (((((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2)) + (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2))) ยท (๐ตโ€˜๐‘˜)) โˆ’ ((โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ถโ€˜๐‘) โˆ’ (๐ทโ€˜๐‘))โ†‘2)) ยท (๐ดโ€˜๐‘˜))) / (โˆšโ€˜ฮฃ๐‘ โˆˆ (1...๐‘)(((๐ดโ€˜๐‘) โˆ’ (๐ตโ€˜๐‘))โ†‘2))))โ€˜๐‘–))โ†‘2) = ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ถโ€˜๐‘–) โˆ’ (๐ทโ€˜๐‘–))โ†‘2))) โ†’ โˆƒ๐‘ฅ โˆˆ (๐”ผโ€˜๐‘)โˆƒ๐‘ก โˆˆ (0[,]1)(โˆ€๐‘– โˆˆ (1...๐‘)(๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘ก) ยท (๐ดโ€˜๐‘–)) + (๐‘ก ยท (๐‘ฅโ€˜๐‘–))) โˆง ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ตโ€˜๐‘–) โˆ’ (๐‘ฅโ€˜๐‘–))โ†‘2) = ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ถโ€˜๐‘–) โˆ’ (๐ทโ€˜๐‘–))โ†‘2)))
3210, 11, 12, 13, 31syl112anc 1371 . . . . . 6 (((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ด โ‰  ๐ต) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘))) โ†’ โˆƒ๐‘ฅ โˆˆ (๐”ผโ€˜๐‘)โˆƒ๐‘ก โˆˆ (0[,]1)(โˆ€๐‘– โˆˆ (1...๐‘)(๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘ก) ยท (๐ดโ€˜๐‘–)) + (๐‘ก ยท (๐‘ฅโ€˜๐‘–))) โˆง ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ตโ€˜๐‘–) โˆ’ (๐‘ฅโ€˜๐‘–))โ†‘2) = ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ถโ€˜๐‘–) โˆ’ (๐ทโ€˜๐‘–))โ†‘2)))
333, 4, 5, 6, 32syl31anc 1370 . . . . 5 ((๐ด โ‰  ๐ต โˆง ((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘)) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘)))) โ†’ โˆƒ๐‘ฅ โˆˆ (๐”ผโ€˜๐‘)โˆƒ๐‘ก โˆˆ (0[,]1)(โˆ€๐‘– โˆˆ (1...๐‘)(๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘ก) ยท (๐ดโ€˜๐‘–)) + (๐‘ก ยท (๐‘ฅโ€˜๐‘–))) โˆง ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ตโ€˜๐‘–) โˆ’ (๐‘ฅโ€˜๐‘–))โ†‘2) = ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ถโ€˜๐‘–) โˆ’ (๐ทโ€˜๐‘–))โ†‘2)))
3433ex 412 . . . 4 (๐ด โ‰  ๐ต โ†’ (((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘)) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘))) โ†’ โˆƒ๐‘ฅ โˆˆ (๐”ผโ€˜๐‘)โˆƒ๐‘ก โˆˆ (0[,]1)(โˆ€๐‘– โˆˆ (1...๐‘)(๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘ก) ยท (๐ดโ€˜๐‘–)) + (๐‘ก ยท (๐‘ฅโ€˜๐‘–))) โˆง ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ตโ€˜๐‘–) โˆ’ (๐‘ฅโ€˜๐‘–))โ†‘2) = ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ถโ€˜๐‘–) โˆ’ (๐ทโ€˜๐‘–))โ†‘2))))
352, 34pm2.61ine 3019 . . 3 (((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘)) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘))) โ†’ โˆƒ๐‘ฅ โˆˆ (๐”ผโ€˜๐‘)โˆƒ๐‘ก โˆˆ (0[,]1)(โˆ€๐‘– โˆˆ (1...๐‘)(๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘ก) ยท (๐ดโ€˜๐‘–)) + (๐‘ก ยท (๐‘ฅโ€˜๐‘–))) โˆง ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ตโ€˜๐‘–) โˆ’ (๐‘ฅโ€˜๐‘–))โ†‘2) = ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ถโ€˜๐‘–) โˆ’ (๐ทโ€˜๐‘–))โ†‘2)))
36 simpllr 773 . . . . . . 7 ((((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘)) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘))) โˆง ๐‘ฅ โˆˆ (๐”ผโ€˜๐‘)) โ†’ ๐ต โˆˆ (๐”ผโ€˜๐‘))
37 simplll 772 . . . . . . 7 ((((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘)) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘))) โˆง ๐‘ฅ โˆˆ (๐”ผโ€˜๐‘)) โ†’ ๐ด โˆˆ (๐”ผโ€˜๐‘))
38 simpr 484 . . . . . . 7 ((((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘)) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘))) โˆง ๐‘ฅ โˆˆ (๐”ผโ€˜๐‘)) โ†’ ๐‘ฅ โˆˆ (๐”ผโ€˜๐‘))
39 brbtwn 28665 . . . . . . 7 ((๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐‘ฅ โˆˆ (๐”ผโ€˜๐‘)) โ†’ (๐ต Btwn โŸจ๐ด, ๐‘ฅโŸฉ โ†” โˆƒ๐‘ก โˆˆ (0[,]1)โˆ€๐‘– โˆˆ (1...๐‘)(๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘ก) ยท (๐ดโ€˜๐‘–)) + (๐‘ก ยท (๐‘ฅโ€˜๐‘–)))))
4036, 37, 38, 39syl3anc 1368 . . . . . 6 ((((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘)) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘))) โˆง ๐‘ฅ โˆˆ (๐”ผโ€˜๐‘)) โ†’ (๐ต Btwn โŸจ๐ด, ๐‘ฅโŸฉ โ†” โˆƒ๐‘ก โˆˆ (0[,]1)โˆ€๐‘– โˆˆ (1...๐‘)(๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘ก) ยท (๐ดโ€˜๐‘–)) + (๐‘ก ยท (๐‘ฅโ€˜๐‘–)))))
41 simplrl 774 . . . . . . 7 ((((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘)) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘))) โˆง ๐‘ฅ โˆˆ (๐”ผโ€˜๐‘)) โ†’ ๐ถ โˆˆ (๐”ผโ€˜๐‘))
42 simplrr 775 . . . . . . 7 ((((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘)) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘))) โˆง ๐‘ฅ โˆˆ (๐”ผโ€˜๐‘)) โ†’ ๐ท โˆˆ (๐”ผโ€˜๐‘))
43 brcgr 28666 . . . . . . 7 (((๐ต โˆˆ (๐”ผโ€˜๐‘) โˆง ๐‘ฅ โˆˆ (๐”ผโ€˜๐‘)) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘))) โ†’ (โŸจ๐ต, ๐‘ฅโŸฉCgrโŸจ๐ถ, ๐ทโŸฉ โ†” ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ตโ€˜๐‘–) โˆ’ (๐‘ฅโ€˜๐‘–))โ†‘2) = ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ถโ€˜๐‘–) โˆ’ (๐ทโ€˜๐‘–))โ†‘2)))
4436, 38, 41, 42, 43syl22anc 836 . . . . . 6 ((((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘)) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘))) โˆง ๐‘ฅ โˆˆ (๐”ผโ€˜๐‘)) โ†’ (โŸจ๐ต, ๐‘ฅโŸฉCgrโŸจ๐ถ, ๐ทโŸฉ โ†” ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ตโ€˜๐‘–) โˆ’ (๐‘ฅโ€˜๐‘–))โ†‘2) = ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ถโ€˜๐‘–) โˆ’ (๐ทโ€˜๐‘–))โ†‘2)))
4540, 44anbi12d 630 . . . . 5 ((((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘)) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘))) โˆง ๐‘ฅ โˆˆ (๐”ผโ€˜๐‘)) โ†’ ((๐ต Btwn โŸจ๐ด, ๐‘ฅโŸฉ โˆง โŸจ๐ต, ๐‘ฅโŸฉCgrโŸจ๐ถ, ๐ทโŸฉ) โ†” (โˆƒ๐‘ก โˆˆ (0[,]1)โˆ€๐‘– โˆˆ (1...๐‘)(๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘ก) ยท (๐ดโ€˜๐‘–)) + (๐‘ก ยท (๐‘ฅโ€˜๐‘–))) โˆง ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ตโ€˜๐‘–) โˆ’ (๐‘ฅโ€˜๐‘–))โ†‘2) = ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ถโ€˜๐‘–) โˆ’ (๐ทโ€˜๐‘–))โ†‘2))))
46 r19.41v 3182 . . . . 5 (โˆƒ๐‘ก โˆˆ (0[,]1)(โˆ€๐‘– โˆˆ (1...๐‘)(๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘ก) ยท (๐ดโ€˜๐‘–)) + (๐‘ก ยท (๐‘ฅโ€˜๐‘–))) โˆง ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ตโ€˜๐‘–) โˆ’ (๐‘ฅโ€˜๐‘–))โ†‘2) = ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ถโ€˜๐‘–) โˆ’ (๐ทโ€˜๐‘–))โ†‘2)) โ†” (โˆƒ๐‘ก โˆˆ (0[,]1)โˆ€๐‘– โˆˆ (1...๐‘)(๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘ก) ยท (๐ดโ€˜๐‘–)) + (๐‘ก ยท (๐‘ฅโ€˜๐‘–))) โˆง ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ตโ€˜๐‘–) โˆ’ (๐‘ฅโ€˜๐‘–))โ†‘2) = ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ถโ€˜๐‘–) โˆ’ (๐ทโ€˜๐‘–))โ†‘2)))
4745, 46bitr4di 289 . . . 4 ((((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘)) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘))) โˆง ๐‘ฅ โˆˆ (๐”ผโ€˜๐‘)) โ†’ ((๐ต Btwn โŸจ๐ด, ๐‘ฅโŸฉ โˆง โŸจ๐ต, ๐‘ฅโŸฉCgrโŸจ๐ถ, ๐ทโŸฉ) โ†” โˆƒ๐‘ก โˆˆ (0[,]1)(โˆ€๐‘– โˆˆ (1...๐‘)(๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘ก) ยท (๐ดโ€˜๐‘–)) + (๐‘ก ยท (๐‘ฅโ€˜๐‘–))) โˆง ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ตโ€˜๐‘–) โˆ’ (๐‘ฅโ€˜๐‘–))โ†‘2) = ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ถโ€˜๐‘–) โˆ’ (๐ทโ€˜๐‘–))โ†‘2))))
4847rexbidva 3170 . . 3 (((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘)) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘))) โ†’ (โˆƒ๐‘ฅ โˆˆ (๐”ผโ€˜๐‘)(๐ต Btwn โŸจ๐ด, ๐‘ฅโŸฉ โˆง โŸจ๐ต, ๐‘ฅโŸฉCgrโŸจ๐ถ, ๐ทโŸฉ) โ†” โˆƒ๐‘ฅ โˆˆ (๐”ผโ€˜๐‘)โˆƒ๐‘ก โˆˆ (0[,]1)(โˆ€๐‘– โˆˆ (1...๐‘)(๐ตโ€˜๐‘–) = (((1 โˆ’ ๐‘ก) ยท (๐ดโ€˜๐‘–)) + (๐‘ก ยท (๐‘ฅโ€˜๐‘–))) โˆง ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ตโ€˜๐‘–) โˆ’ (๐‘ฅโ€˜๐‘–))โ†‘2) = ฮฃ๐‘– โˆˆ (1...๐‘)(((๐ถโ€˜๐‘–) โˆ’ (๐ทโ€˜๐‘–))โ†‘2))))
4935, 48mpbird 257 . 2 (((๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘)) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘))) โ†’ โˆƒ๐‘ฅ โˆˆ (๐”ผโ€˜๐‘)(๐ต Btwn โŸจ๐ด, ๐‘ฅโŸฉ โˆง โŸจ๐ต, ๐‘ฅโŸฉCgrโŸจ๐ถ, ๐ทโŸฉ))
50493adant1 1127 1 ((๐‘ โˆˆ โ„• โˆง (๐ด โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ต โˆˆ (๐”ผโ€˜๐‘)) โˆง (๐ถ โˆˆ (๐”ผโ€˜๐‘) โˆง ๐ท โˆˆ (๐”ผโ€˜๐‘))) โ†’ โˆƒ๐‘ฅ โˆˆ (๐”ผโ€˜๐‘)(๐ต Btwn โŸจ๐ด, ๐‘ฅโŸฉ โˆง โŸจ๐ต, ๐‘ฅโŸฉCgrโŸจ๐ถ, ๐ทโŸฉ))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โ†” wb 205   โˆง wa 395   โˆง w3a 1084   = wceq 1533   โˆˆ wcel 2098   โ‰  wne 2934  โˆ€wral 3055  โˆƒwrex 3064  โŸจcop 4629   class class class wbr 5141   โ†ฆ cmpt 5224  โ€˜cfv 6537  (class class class)co 7405  0cc0 11112  1c1 11113   + caddc 11115   ยท cmul 11117   โˆ’ cmin 11448   / cdiv 11875  โ„•cn 12216  2c2 12271  [,]cicc 13333  ...cfz 13490  โ†‘cexp 14032  โˆšcsqrt 15186  ฮฃcsu 15638  ๐”ผcee 28654   Btwn cbtwn 28655  Cgrccgr 28656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-isom 6546  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-oi 9507  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-n0 12477  df-z 12563  df-uz 12827  df-rp 12981  df-ico 13336  df-icc 13337  df-fz 13491  df-fzo 13634  df-seq 13973  df-exp 14033  df-hash 14296  df-cj 15052  df-re 15053  df-im 15054  df-sqrt 15188  df-abs 15189  df-clim 15438  df-sum 15639  df-ee 28657  df-btwn 28658  df-cgr 28659
This theorem is referenced by:  eengtrkg  28752  cgrtriv  35507  segconeu  35516  btwntriv2  35517  btwnouttr2  35527  btwndiff  35532  ifscgr  35549  cgrxfr  35560  lineext  35581  btwnconn1lem13  35604  btwnconn1lem14  35605  segcon2  35610
  Copyright terms: Public domain W3C validator