MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axsegcon Structured version   Visualization version   GIF version

Theorem axsegcon 28942
Description: Any segment 𝐴𝐵 can be extended to a point 𝑥 such that 𝐵𝑥 is congruent to 𝐶𝐷. Axiom A4 of [Schwabhauser] p. 11. (Contributed by Scott Fenton, 4-Jun-2013.)
Assertion
Ref Expression
axsegcon ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐵, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))
Distinct variable groups:   𝑥,𝑁   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷

Proof of Theorem axsegcon
Dummy variables 𝑘 𝑝 𝑡 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axsegconlem1 28932 . . . . 5 ((𝐴 = 𝐵 ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
21ex 412 . . . 4 (𝐴 = 𝐵 → (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))))
3 simprll 779 . . . . . 6 ((𝐴𝐵 ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) → 𝐴 ∈ (𝔼‘𝑁))
4 simprlr 780 . . . . . 6 ((𝐴𝐵 ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) → 𝐵 ∈ (𝔼‘𝑁))
5 simpl 482 . . . . . 6 ((𝐴𝐵 ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) → 𝐴𝐵)
6 simprr 773 . . . . . 6 ((𝐴𝐵 ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) → (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))
7 eqid 2737 . . . . . . . 8 Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2) = Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)
8 eqid 2737 . . . . . . . 8 Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2) = Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)
9 eqid 2737 . . . . . . . 8 (𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)))) = (𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))
107, 8, 9axsegconlem8 28939 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)))) ∈ (𝔼‘𝑁))
117, 8axsegconlem7 28938 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)))) ∈ (0[,]1))
127, 8, 9axsegconlem10 28941 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))))) · (𝐴𝑖)) + (((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)))) · ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖))))
137, 8, 9axsegconlem9 28940 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))
14 fveq1 6905 . . . . . . . . . . . . 13 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)))) → (𝑥𝑖) = ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖))
1514oveq2d 7447 . . . . . . . . . . . 12 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)))) → (𝑡 · (𝑥𝑖)) = (𝑡 · ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖)))
1615oveq2d 7447 . . . . . . . . . . 11 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)))) → (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖))))
1716eqeq2d 2748 . . . . . . . . . 10 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)))) → ((𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ↔ (𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖)))))
1817ralbidv 3178 . . . . . . . . 9 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)))) → (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖)))))
1914oveq2d 7447 . . . . . . . . . . . 12 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)))) → ((𝐵𝑖) − (𝑥𝑖)) = ((𝐵𝑖) − ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖)))
2019oveq1d 7446 . . . . . . . . . . 11 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)))) → (((𝐵𝑖) − (𝑥𝑖))↑2) = (((𝐵𝑖) − ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖))↑2))
2120sumeq2sdv 15739 . . . . . . . . . 10 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)))) → Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖))↑2))
2221eqeq1d 2739 . . . . . . . . 9 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)))) → (Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
2318, 22anbi12d 632 . . . . . . . 8 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)))) → ((∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)) ↔ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))))
24 oveq2 7439 . . . . . . . . . . . . 13 (𝑡 = ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)))) → (1 − 𝑡) = (1 − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))))))
2524oveq1d 7446 . . . . . . . . . . . 12 (𝑡 = ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)))) → ((1 − 𝑡) · (𝐴𝑖)) = ((1 − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))))) · (𝐴𝑖)))
26 oveq1 7438 . . . . . . . . . . . 12 (𝑡 = ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)))) → (𝑡 · ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖)) = (((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)))) · ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖)))
2725, 26oveq12d 7449 . . . . . . . . . . 11 (𝑡 = ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)))) → (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖))) = (((1 − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))))) · (𝐴𝑖)) + (((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)))) · ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖))))
2827eqeq2d 2748 . . . . . . . . . 10 (𝑡 = ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)))) → ((𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖))) ↔ (𝐵𝑖) = (((1 − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))))) · (𝐴𝑖)) + (((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)))) · ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖)))))
2928ralbidv 3178 . . . . . . . . 9 (𝑡 = ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)))) → (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))))) · (𝐴𝑖)) + (((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)))) · ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖)))))
3029anbi1d 631 . . . . . . . 8 (𝑡 = ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)))) → ((∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)) ↔ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))))) · (𝐴𝑖)) + (((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)))) · ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))))
3123, 30rspc2ev 3635 . . . . . . 7 (((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)))) ∈ (𝔼‘𝑁) ∧ ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)))) ∈ (0[,]1) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))))) · (𝐴𝑖)) + (((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)))) · ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
3210, 11, 12, 13, 31syl112anc 1376 . . . . . 6 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
333, 4, 5, 6, 32syl31anc 1375 . . . . 5 ((𝐴𝐵 ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
3433ex 412 . . . 4 (𝐴𝐵 → (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))))
352, 34pm2.61ine 3025 . . 3 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
36 simpllr 776 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
37 simplll 775 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
38 simpr 484 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑥 ∈ (𝔼‘𝑁))
39 brbtwn 28914 . . . . . . 7 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝐵 Btwn ⟨𝐴, 𝑥⟩ ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖)))))
4036, 37, 38, 39syl3anc 1373 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝐵 Btwn ⟨𝐴, 𝑥⟩ ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖)))))
41 simplrl 777 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
42 simplrr 778 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐷 ∈ (𝔼‘𝑁))
43 brcgr 28915 . . . . . . 7 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐵, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ↔ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
4436, 38, 41, 42, 43syl22anc 839 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (⟨𝐵, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ↔ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
4540, 44anbi12d 632 . . . . 5 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐵, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ↔ (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))))
46 r19.41v 3189 . . . . 5 (∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)) ↔ (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
4745, 46bitr4di 289 . . . 4 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐵, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ↔ ∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))))
4847rexbidva 3177 . . 3 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐵, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))))
4935, 48mpbird 257 . 2 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐵, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))
50493adant1 1131 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐵, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  cop 4632   class class class wbr 5143  cmpt 5225  cfv 6561  (class class class)co 7431  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  cmin 11492   / cdiv 11920  cn 12266  2c2 12321  [,]cicc 13390  ...cfz 13547  cexp 14102  csqrt 15272  Σcsu 15722  𝔼cee 28903   Btwn cbtwn 28904  Cgrccgr 28905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-ee 28906  df-btwn 28907  df-cgr 28908
This theorem is referenced by:  eengtrkg  29001  cgrtriv  36003  segconeu  36012  btwntriv2  36013  btwnouttr2  36023  btwndiff  36028  ifscgr  36045  cgrxfr  36056  lineext  36077  btwnconn1lem13  36100  btwnconn1lem14  36101  segcon2  36106
  Copyright terms: Public domain W3C validator