MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axsegcon Structured version   Visualization version   GIF version

Theorem axsegcon 26400
Description: Any segment 𝐴𝐵 can be extended to a point 𝑥 such that 𝐵𝑥 is congruent to 𝐶𝐷. Axiom A4 of [Schwabhauser] p. 11. (Contributed by Scott Fenton, 4-Jun-2013.)
Assertion
Ref Expression
axsegcon ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐵, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))
Distinct variable groups:   𝑥,𝑁   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷

Proof of Theorem axsegcon
Dummy variables 𝑘 𝑝 𝑡 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axsegconlem1 26390 . . . . 5 ((𝐴 = 𝐵 ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
21ex 413 . . . 4 (𝐴 = 𝐵 → (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))))
3 simprll 775 . . . . . 6 ((𝐴𝐵 ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) → 𝐴 ∈ (𝔼‘𝑁))
4 simprlr 776 . . . . . 6 ((𝐴𝐵 ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) → 𝐵 ∈ (𝔼‘𝑁))
5 simpl 483 . . . . . 6 ((𝐴𝐵 ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) → 𝐴𝐵)
6 simprr 769 . . . . . 6 ((𝐴𝐵 ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) → (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))
7 eqid 2797 . . . . . . . 8 Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2) = Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)
8 eqid 2797 . . . . . . . 8 Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2) = Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)
9 eqid 2797 . . . . . . . 8 (𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)))) = (𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))
107, 8, 9axsegconlem8 26397 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)))) ∈ (𝔼‘𝑁))
117, 8axsegconlem7 26396 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)))) ∈ (0[,]1))
127, 8, 9axsegconlem10 26399 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))))) · (𝐴𝑖)) + (((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)))) · ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖))))
137, 8, 9axsegconlem9 26398 . . . . . . 7 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))
14 fveq1 6544 . . . . . . . . . . . . 13 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)))) → (𝑥𝑖) = ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖))
1514oveq2d 7039 . . . . . . . . . . . 12 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)))) → (𝑡 · (𝑥𝑖)) = (𝑡 · ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖)))
1615oveq2d 7039 . . . . . . . . . . 11 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)))) → (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖))))
1716eqeq2d 2807 . . . . . . . . . 10 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)))) → ((𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ↔ (𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖)))))
1817ralbidv 3166 . . . . . . . . 9 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)))) → (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖)))))
1914oveq2d 7039 . . . . . . . . . . . 12 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)))) → ((𝐵𝑖) − (𝑥𝑖)) = ((𝐵𝑖) − ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖)))
2019oveq1d 7038 . . . . . . . . . . 11 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)))) → (((𝐵𝑖) − (𝑥𝑖))↑2) = (((𝐵𝑖) − ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖))↑2))
2120sumeq2sdv 14898 . . . . . . . . . 10 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)))) → Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖))↑2))
2221eqeq1d 2799 . . . . . . . . 9 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)))) → (Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2) ↔ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
2318, 22anbi12d 630 . . . . . . . 8 (𝑥 = (𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)))) → ((∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)) ↔ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))))
24 oveq2 7031 . . . . . . . . . . . . 13 (𝑡 = ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)))) → (1 − 𝑡) = (1 − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))))))
2524oveq1d 7038 . . . . . . . . . . . 12 (𝑡 = ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)))) → ((1 − 𝑡) · (𝐴𝑖)) = ((1 − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))))) · (𝐴𝑖)))
26 oveq1 7030 . . . . . . . . . . . 12 (𝑡 = ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)))) → (𝑡 · ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖)) = (((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)))) · ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖)))
2725, 26oveq12d 7041 . . . . . . . . . . 11 (𝑡 = ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)))) → (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖))) = (((1 − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))))) · (𝐴𝑖)) + (((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)))) · ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖))))
2827eqeq2d 2807 . . . . . . . . . 10 (𝑡 = ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)))) → ((𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖))) ↔ (𝐵𝑖) = (((1 − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))))) · (𝐴𝑖)) + (((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)))) · ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖)))))
2928ralbidv 3166 . . . . . . . . 9 (𝑡 = ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)))) → (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖))) ↔ ∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))))) · (𝐴𝑖)) + (((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)))) · ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖)))))
3029anbi1d 629 . . . . . . . 8 (𝑡 = ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)))) → ((∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)) ↔ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))))) · (𝐴𝑖)) + (((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)))) · ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))))
3123, 30rspc2ev 3576 . . . . . . 7 (((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)))) ∈ (𝔼‘𝑁) ∧ ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)))) ∈ (0[,]1) ∧ (∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))))) · (𝐴𝑖)) + (((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) / ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)))) · ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − ((𝑘 ∈ (1...𝑁) ↦ (((((√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2)) + (√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2))) · (𝐵𝑘)) − ((√‘Σ𝑝 ∈ (1...𝑁)(((𝐶𝑝) − (𝐷𝑝))↑2)) · (𝐴𝑘))) / (√‘Σ𝑝 ∈ (1...𝑁)(((𝐴𝑝) − (𝐵𝑝))↑2))))‘𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
3210, 11, 12, 13, 31syl112anc 1367 . . . . . 6 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴𝐵) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
333, 4, 5, 6, 32syl31anc 1366 . . . . 5 ((𝐴𝐵 ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
3433ex 413 . . . 4 (𝐴𝐵 → (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))))
352, 34pm2.61ine 3070 . . 3 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
36 simpllr 772 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
37 simplll 771 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
38 simpr 485 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑥 ∈ (𝔼‘𝑁))
39 brbtwn 26372 . . . . . . 7 ((𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝐵 Btwn ⟨𝐴, 𝑥⟩ ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖)))))
4036, 37, 38, 39syl3anc 1364 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝐵 Btwn ⟨𝐴, 𝑥⟩ ↔ ∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖)))))
41 simplrl 773 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
42 simplrr 774 . . . . . . 7 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐷 ∈ (𝔼‘𝑁))
43 brcgr 26373 . . . . . . 7 (((𝐵 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐵, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ↔ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
4436, 38, 41, 42, 43syl22anc 835 . . . . . 6 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (⟨𝐵, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ↔ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
4540, 44anbi12d 630 . . . . 5 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐵, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ↔ (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))))
46 r19.41v 3310 . . . . 5 (∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)) ↔ (∃𝑡 ∈ (0[,]1)∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2)))
4745, 46syl6bbr 290 . . . 4 ((((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐵, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ↔ ∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))))
4847rexbidva 3261 . . 3 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐵, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ↔ ∃𝑥 ∈ (𝔼‘𝑁)∃𝑡 ∈ (0[,]1)(∀𝑖 ∈ (1...𝑁)(𝐵𝑖) = (((1 − 𝑡) · (𝐴𝑖)) + (𝑡 · (𝑥𝑖))) ∧ Σ𝑖 ∈ (1...𝑁)(((𝐵𝑖) − (𝑥𝑖))↑2) = Σ𝑖 ∈ (1...𝑁)(((𝐶𝑖) − (𝐷𝑖))↑2))))
4935, 48mpbird 258 . 2 (((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐵, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))
50493adant1 1123 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐵, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1080   = wceq 1525  wcel 2083  wne 2986  wral 3107  wrex 3108  cop 4484   class class class wbr 4968  cmpt 5047  cfv 6232  (class class class)co 7023  0cc0 10390  1c1 10391   + caddc 10393   · cmul 10395  cmin 10723   / cdiv 11151  cn 11492  2c2 11546  [,]cicc 12595  ...cfz 12746  cexp 13283  csqrt 14430  Σcsu 14880  𝔼cee 26361   Btwn cbtwn 26362  Cgrccgr 26363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-inf2 8957  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467  ax-pre-sup 10468
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-fal 1538  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-se 5410  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-isom 6241  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-1st 7552  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-1o 7960  df-oadd 7964  df-er 8146  df-map 8265  df-en 8365  df-dom 8366  df-sdom 8367  df-fin 8368  df-sup 8759  df-oi 8827  df-card 9221  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-div 11152  df-nn 11493  df-2 11554  df-3 11555  df-n0 11752  df-z 11836  df-uz 12098  df-rp 12244  df-ico 12598  df-icc 12599  df-fz 12747  df-fzo 12888  df-seq 13224  df-exp 13284  df-hash 13545  df-cj 14296  df-re 14297  df-im 14298  df-sqrt 14432  df-abs 14433  df-clim 14683  df-sum 14881  df-ee 26364  df-btwn 26365  df-cgr 26366
This theorem is referenced by:  eengtrkg  26459  cgrtriv  33074  segconeu  33083  btwntriv2  33084  btwnouttr2  33094  btwndiff  33099  ifscgr  33116  cgrxfr  33127  lineext  33148  btwnconn1lem13  33171  btwnconn1lem14  33172  segcon2  33177
  Copyright terms: Public domain W3C validator