| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rankfilimb | Structured version Visualization version GIF version | ||
| Description: The rank of a finite well-founded set is less than a limit ordinal iff the ranks of all of its elements are less than that limit ordinal. (Contributed by BTernaryTau, 22-Jan-2026.) |
| Ref | Expression |
|---|---|
| rankfilimb | ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ∈ ∪ (𝑅1 “ On) ∧ Lim 𝐵) → ((rank‘𝐴) ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (rank‘𝑥) ∈ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankelb 9724 | . . . . . 6 ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (𝑥 ∈ 𝐴 → (rank‘𝑥) ∈ (rank‘𝐴))) | |
| 2 | 1 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ∈ ∪ (𝑅1 “ On) ∧ Lim 𝐵) → (𝑥 ∈ 𝐴 → (rank‘𝑥) ∈ (rank‘𝐴))) |
| 3 | limord 6372 | . . . . . . 7 ⊢ (Lim 𝐵 → Ord 𝐵) | |
| 4 | ordtr1 6355 | . . . . . . 7 ⊢ (Ord 𝐵 → (((rank‘𝑥) ∈ (rank‘𝐴) ∧ (rank‘𝐴) ∈ 𝐵) → (rank‘𝑥) ∈ 𝐵)) | |
| 5 | 3, 4 | syl 17 | . . . . . 6 ⊢ (Lim 𝐵 → (((rank‘𝑥) ∈ (rank‘𝐴) ∧ (rank‘𝐴) ∈ 𝐵) → (rank‘𝑥) ∈ 𝐵)) |
| 6 | 5 | 3ad2ant3 1135 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ∈ ∪ (𝑅1 “ On) ∧ Lim 𝐵) → (((rank‘𝑥) ∈ (rank‘𝐴) ∧ (rank‘𝐴) ∈ 𝐵) → (rank‘𝑥) ∈ 𝐵)) |
| 7 | 2, 6 | syland 603 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ∈ ∪ (𝑅1 “ On) ∧ Lim 𝐵) → ((𝑥 ∈ 𝐴 ∧ (rank‘𝐴) ∈ 𝐵) → (rank‘𝑥) ∈ 𝐵)) |
| 8 | 7 | expcomd 416 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ∈ ∪ (𝑅1 “ On) ∧ Lim 𝐵) → ((rank‘𝐴) ∈ 𝐵 → (𝑥 ∈ 𝐴 → (rank‘𝑥) ∈ 𝐵))) |
| 9 | 8 | ralrimdv 3131 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ∈ ∪ (𝑅1 “ On) ∧ Lim 𝐵) → ((rank‘𝐴) ∈ 𝐵 → ∀𝑥 ∈ 𝐴 (rank‘𝑥) ∈ 𝐵)) |
| 10 | rankfilimbi 35133 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝐴 ∈ ∪ (𝑅1 “ On)) ∧ (∀𝑥 ∈ 𝐴 (rank‘𝑥) ∈ 𝐵 ∧ Lim 𝐵)) → (rank‘𝐴) ∈ 𝐵) | |
| 11 | 10 | 3impb 1114 | . . . . 5 ⊢ (((𝐴 ∈ Fin ∧ 𝐴 ∈ ∪ (𝑅1 “ On)) ∧ ∀𝑥 ∈ 𝐴 (rank‘𝑥) ∈ 𝐵 ∧ Lim 𝐵) → (rank‘𝐴) ∈ 𝐵) |
| 12 | 11 | 3com23 1126 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝐴 ∈ ∪ (𝑅1 “ On)) ∧ Lim 𝐵 ∧ ∀𝑥 ∈ 𝐴 (rank‘𝑥) ∈ 𝐵) → (rank‘𝐴) ∈ 𝐵) |
| 13 | 12 | 3expia 1121 | . . 3 ⊢ (((𝐴 ∈ Fin ∧ 𝐴 ∈ ∪ (𝑅1 “ On)) ∧ Lim 𝐵) → (∀𝑥 ∈ 𝐴 (rank‘𝑥) ∈ 𝐵 → (rank‘𝐴) ∈ 𝐵)) |
| 14 | 13 | 3impa 1109 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ∈ ∪ (𝑅1 “ On) ∧ Lim 𝐵) → (∀𝑥 ∈ 𝐴 (rank‘𝑥) ∈ 𝐵 → (rank‘𝐴) ∈ 𝐵)) |
| 15 | 9, 14 | impbid 212 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ∈ ∪ (𝑅1 “ On) ∧ Lim 𝐵) → ((rank‘𝐴) ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (rank‘𝑥) ∈ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2113 ∀wral 3048 ∪ cuni 4858 “ cima 5622 Ord word 6310 Oncon0 6311 Lim wlim 6312 ‘cfv 6486 Fincfn 8875 𝑅1cr1 9662 rankcrnk 9663 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-en 8876 df-dom 8877 df-fin 8879 df-r1 9664 df-rank 9665 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |