Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reprlt Structured version   Visualization version   GIF version

Theorem reprlt 34617
Description: There are no representations of 𝑀 with more than 𝑀 terms. Remark of [Nathanson] p. 123. (Contributed by Thierry Arnoux, 7-Dec-2021.)
Hypotheses
Ref Expression
reprval.a (𝜑𝐴 ⊆ ℕ)
reprval.m (𝜑𝑀 ∈ ℤ)
reprval.s (𝜑𝑆 ∈ ℕ0)
reprlt.1 (𝜑𝑀 < 𝑆)
Assertion
Ref Expression
reprlt (𝜑 → (𝐴(repr‘𝑆)𝑀) = ∅)

Proof of Theorem reprlt
Dummy variables 𝑐 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reprval.a . . 3 (𝜑𝐴 ⊆ ℕ)
2 reprval.m . . 3 (𝜑𝑀 ∈ ℤ)
3 reprval.s . . 3 (𝜑𝑆 ∈ ℕ0)
41, 2, 3reprval 34608 . 2 (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
52zred 12645 . . . . . . . 8 (𝜑𝑀 ∈ ℝ)
65adantr 480 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑀 ∈ ℝ)
73nn0red 12511 . . . . . . . . 9 (𝜑𝑆 ∈ ℝ)
87adantr 480 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑆 ∈ ℝ)
9 fzofi 13946 . . . . . . . . . 10 (0..^𝑆) ∈ Fin
109a1i 11 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → (0..^𝑆) ∈ Fin)
11 nnssre 12197 . . . . . . . . . . . . 13 ℕ ⊆ ℝ
1211a1i 11 . . . . . . . . . . . 12 (𝜑 → ℕ ⊆ ℝ)
131, 12sstrd 3960 . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℝ)
1413ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐴 ⊆ ℝ)
15 nnex 12199 . . . . . . . . . . . . . . . 16 ℕ ∈ V
1615a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ℕ ∈ V)
1716, 1ssexd 5282 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ V)
1817adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝐴 ∈ V)
199elexi 3473 . . . . . . . . . . . . . 14 (0..^𝑆) ∈ V
2019a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → (0..^𝑆) ∈ V)
21 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑐 ∈ (𝐴m (0..^𝑆)))
22 elmapg 8815 . . . . . . . . . . . . . 14 ((𝐴 ∈ V ∧ (0..^𝑆) ∈ V) → (𝑐 ∈ (𝐴m (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶𝐴))
2322biimpa 476 . . . . . . . . . . . . 13 (((𝐴 ∈ V ∧ (0..^𝑆) ∈ V) ∧ 𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑐:(0..^𝑆)⟶𝐴)
2418, 20, 21, 23syl21anc 837 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑐:(0..^𝑆)⟶𝐴)
2524adantr 480 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑐:(0..^𝑆)⟶𝐴)
26 simpr 484 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑎 ∈ (0..^𝑆))
2725, 26ffvelcdmd 7060 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ 𝐴)
2814, 27sseldd 3950 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ ℝ)
2910, 28fsumrecl 15707 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) ∈ ℝ)
30 reprlt.1 . . . . . . . . 9 (𝜑𝑀 < 𝑆)
3130adantr 480 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑀 < 𝑆)
32 ax-1cn 11133 . . . . . . . . . . . . 13 1 ∈ ℂ
33 fsumconst 15763 . . . . . . . . . . . . 13 (((0..^𝑆) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑎 ∈ (0..^𝑆)1 = ((♯‘(0..^𝑆)) · 1))
349, 32, 33mp2an 692 . . . . . . . . . . . 12 Σ𝑎 ∈ (0..^𝑆)1 = ((♯‘(0..^𝑆)) · 1)
35 hashcl 14328 . . . . . . . . . . . . . . 15 ((0..^𝑆) ∈ Fin → (♯‘(0..^𝑆)) ∈ ℕ0)
369, 35ax-mp 5 . . . . . . . . . . . . . 14 (♯‘(0..^𝑆)) ∈ ℕ0
3736nn0cni 12461 . . . . . . . . . . . . 13 (♯‘(0..^𝑆)) ∈ ℂ
3837mulridi 11185 . . . . . . . . . . . 12 ((♯‘(0..^𝑆)) · 1) = (♯‘(0..^𝑆))
3934, 38eqtri 2753 . . . . . . . . . . 11 Σ𝑎 ∈ (0..^𝑆)1 = (♯‘(0..^𝑆))
40 hashfzo0 14402 . . . . . . . . . . . 12 (𝑆 ∈ ℕ0 → (♯‘(0..^𝑆)) = 𝑆)
413, 40syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘(0..^𝑆)) = 𝑆)
4239, 41eqtrid 2777 . . . . . . . . . 10 (𝜑 → Σ𝑎 ∈ (0..^𝑆)1 = 𝑆)
4342adantr 480 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)1 = 𝑆)
44 1red 11182 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 1 ∈ ℝ)
451ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐴 ⊆ ℕ)
4645, 27sseldd 3950 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ ℕ)
47 nnge1 12221 . . . . . . . . . . 11 ((𝑐𝑎) ∈ ℕ → 1 ≤ (𝑐𝑎))
4846, 47syl 17 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 1 ≤ (𝑐𝑎))
4910, 44, 28, 48fsumle 15772 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)1 ≤ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎))
5043, 49eqbrtrrd 5134 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑆 ≤ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎))
516, 8, 29, 31, 50ltletrd 11341 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑀 < Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎))
526, 51ltned 11317 . . . . . 6 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑀 ≠ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎))
5352necomd 2981 . . . . 5 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) ≠ 𝑀)
5453neneqd 2931 . . . 4 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → ¬ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)
5554ralrimiva 3126 . . 3 (𝜑 → ∀𝑐 ∈ (𝐴m (0..^𝑆)) ¬ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)
56 rabeq0 4354 . . 3 ({𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀} = ∅ ↔ ∀𝑐 ∈ (𝐴m (0..^𝑆)) ¬ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)
5755, 56sylibr 234 . 2 (𝜑 → {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀} = ∅)
584, 57eqtrd 2765 1 (𝜑 → (𝐴(repr‘𝑆)𝑀) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  {crab 3408  Vcvv 3450  wss 3917  c0 4299   class class class wbr 5110  wf 6510  cfv 6514  (class class class)co 7390  m cmap 8802  Fincfn 8921  cc 11073  cr 11074  0cc0 11075  1c1 11076   · cmul 11080   < clt 11215  cle 11216  cn 12193  0cn0 12449  cz 12536  ..^cfzo 13622  chash 14302  Σcsu 15659  reprcrepr 34606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-ico 13319  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-repr 34607
This theorem is referenced by:  breprexplemc  34630
  Copyright terms: Public domain W3C validator