Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reprlt Structured version   Visualization version   GIF version

Theorem reprlt 34634
Description: There are no representations of 𝑀 with more than 𝑀 terms. Remark of [Nathanson] p. 123. (Contributed by Thierry Arnoux, 7-Dec-2021.)
Hypotheses
Ref Expression
reprval.a (𝜑𝐴 ⊆ ℕ)
reprval.m (𝜑𝑀 ∈ ℤ)
reprval.s (𝜑𝑆 ∈ ℕ0)
reprlt.1 (𝜑𝑀 < 𝑆)
Assertion
Ref Expression
reprlt (𝜑 → (𝐴(repr‘𝑆)𝑀) = ∅)

Proof of Theorem reprlt
Dummy variables 𝑐 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reprval.a . . 3 (𝜑𝐴 ⊆ ℕ)
2 reprval.m . . 3 (𝜑𝑀 ∈ ℤ)
3 reprval.s . . 3 (𝜑𝑆 ∈ ℕ0)
41, 2, 3reprval 34625 . 2 (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
52zred 12722 . . . . . . . 8 (𝜑𝑀 ∈ ℝ)
65adantr 480 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑀 ∈ ℝ)
73nn0red 12588 . . . . . . . . 9 (𝜑𝑆 ∈ ℝ)
87adantr 480 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑆 ∈ ℝ)
9 fzofi 14015 . . . . . . . . . 10 (0..^𝑆) ∈ Fin
109a1i 11 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → (0..^𝑆) ∈ Fin)
11 nnssre 12270 . . . . . . . . . . . . 13 ℕ ⊆ ℝ
1211a1i 11 . . . . . . . . . . . 12 (𝜑 → ℕ ⊆ ℝ)
131, 12sstrd 3994 . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℝ)
1413ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐴 ⊆ ℝ)
15 nnex 12272 . . . . . . . . . . . . . . . 16 ℕ ∈ V
1615a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ℕ ∈ V)
1716, 1ssexd 5324 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ V)
1817adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝐴 ∈ V)
199elexi 3503 . . . . . . . . . . . . . 14 (0..^𝑆) ∈ V
2019a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → (0..^𝑆) ∈ V)
21 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑐 ∈ (𝐴m (0..^𝑆)))
22 elmapg 8879 . . . . . . . . . . . . . 14 ((𝐴 ∈ V ∧ (0..^𝑆) ∈ V) → (𝑐 ∈ (𝐴m (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶𝐴))
2322biimpa 476 . . . . . . . . . . . . 13 (((𝐴 ∈ V ∧ (0..^𝑆) ∈ V) ∧ 𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑐:(0..^𝑆)⟶𝐴)
2418, 20, 21, 23syl21anc 838 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑐:(0..^𝑆)⟶𝐴)
2524adantr 480 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑐:(0..^𝑆)⟶𝐴)
26 simpr 484 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑎 ∈ (0..^𝑆))
2725, 26ffvelcdmd 7105 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ 𝐴)
2814, 27sseldd 3984 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ ℝ)
2910, 28fsumrecl 15770 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) ∈ ℝ)
30 reprlt.1 . . . . . . . . 9 (𝜑𝑀 < 𝑆)
3130adantr 480 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑀 < 𝑆)
32 ax-1cn 11213 . . . . . . . . . . . . 13 1 ∈ ℂ
33 fsumconst 15826 . . . . . . . . . . . . 13 (((0..^𝑆) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑎 ∈ (0..^𝑆)1 = ((♯‘(0..^𝑆)) · 1))
349, 32, 33mp2an 692 . . . . . . . . . . . 12 Σ𝑎 ∈ (0..^𝑆)1 = ((♯‘(0..^𝑆)) · 1)
35 hashcl 14395 . . . . . . . . . . . . . . 15 ((0..^𝑆) ∈ Fin → (♯‘(0..^𝑆)) ∈ ℕ0)
369, 35ax-mp 5 . . . . . . . . . . . . . 14 (♯‘(0..^𝑆)) ∈ ℕ0
3736nn0cni 12538 . . . . . . . . . . . . 13 (♯‘(0..^𝑆)) ∈ ℂ
3837mulridi 11265 . . . . . . . . . . . 12 ((♯‘(0..^𝑆)) · 1) = (♯‘(0..^𝑆))
3934, 38eqtri 2765 . . . . . . . . . . 11 Σ𝑎 ∈ (0..^𝑆)1 = (♯‘(0..^𝑆))
40 hashfzo0 14469 . . . . . . . . . . . 12 (𝑆 ∈ ℕ0 → (♯‘(0..^𝑆)) = 𝑆)
413, 40syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘(0..^𝑆)) = 𝑆)
4239, 41eqtrid 2789 . . . . . . . . . 10 (𝜑 → Σ𝑎 ∈ (0..^𝑆)1 = 𝑆)
4342adantr 480 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)1 = 𝑆)
44 1red 11262 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 1 ∈ ℝ)
451ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐴 ⊆ ℕ)
4645, 27sseldd 3984 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ ℕ)
47 nnge1 12294 . . . . . . . . . . 11 ((𝑐𝑎) ∈ ℕ → 1 ≤ (𝑐𝑎))
4846, 47syl 17 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 1 ≤ (𝑐𝑎))
4910, 44, 28, 48fsumle 15835 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)1 ≤ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎))
5043, 49eqbrtrrd 5167 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑆 ≤ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎))
516, 8, 29, 31, 50ltletrd 11421 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑀 < Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎))
526, 51ltned 11397 . . . . . 6 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑀 ≠ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎))
5352necomd 2996 . . . . 5 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) ≠ 𝑀)
5453neneqd 2945 . . . 4 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → ¬ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)
5554ralrimiva 3146 . . 3 (𝜑 → ∀𝑐 ∈ (𝐴m (0..^𝑆)) ¬ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)
56 rabeq0 4388 . . 3 ({𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀} = ∅ ↔ ∀𝑐 ∈ (𝐴m (0..^𝑆)) ¬ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)
5755, 56sylibr 234 . 2 (𝜑 → {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀} = ∅)
584, 57eqtrd 2777 1 (𝜑 → (𝐴(repr‘𝑆)𝑀) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061  {crab 3436  Vcvv 3480  wss 3951  c0 4333   class class class wbr 5143  wf 6557  cfv 6561  (class class class)co 7431  m cmap 8866  Fincfn 8985  cc 11153  cr 11154  0cc0 11155  1c1 11156   · cmul 11160   < clt 11295  cle 11296  cn 12266  0cn0 12526  cz 12613  ..^cfzo 13694  chash 14369  Σcsu 15722  reprcrepr 34623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-ico 13393  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-repr 34624
This theorem is referenced by:  breprexplemc  34647
  Copyright terms: Public domain W3C validator