Step | Hyp | Ref
| Expression |
1 | | reprval.a |
. . 3
β’ (π β π΄ β β) |
2 | | reprval.m |
. . 3
β’ (π β π β β€) |
3 | | reprval.s |
. . 3
β’ (π β π β
β0) |
4 | 1, 2, 3 | reprval 33263 |
. 2
β’ (π β (π΄(reprβπ)π) = {π β (π΄ βm (0..^π)) β£ Ξ£π β (0..^π)(πβπ) = π}) |
5 | 2 | zred 12614 |
. . . . . . . 8
β’ (π β π β β) |
6 | 5 | adantr 482 |
. . . . . . 7
β’ ((π β§ π β (π΄ βm (0..^π))) β π β β) |
7 | 3 | nn0red 12481 |
. . . . . . . . 9
β’ (π β π β β) |
8 | 7 | adantr 482 |
. . . . . . . 8
β’ ((π β§ π β (π΄ βm (0..^π))) β π β β) |
9 | | fzofi 13886 |
. . . . . . . . . 10
β’
(0..^π) β
Fin |
10 | 9 | a1i 11 |
. . . . . . . . 9
β’ ((π β§ π β (π΄ βm (0..^π))) β (0..^π) β Fin) |
11 | | nnssre 12164 |
. . . . . . . . . . . . 13
β’ β
β β |
12 | 11 | a1i 11 |
. . . . . . . . . . . 12
β’ (π β β β
β) |
13 | 1, 12 | sstrd 3959 |
. . . . . . . . . . 11
β’ (π β π΄ β β) |
14 | 13 | ad2antrr 725 |
. . . . . . . . . 10
β’ (((π β§ π β (π΄ βm (0..^π))) β§ π β (0..^π)) β π΄ β β) |
15 | | nnex 12166 |
. . . . . . . . . . . . . . . 16
β’ β
β V |
16 | 15 | a1i 11 |
. . . . . . . . . . . . . . 15
β’ (π β β β
V) |
17 | 16, 1 | ssexd 5286 |
. . . . . . . . . . . . . 14
β’ (π β π΄ β V) |
18 | 17 | adantr 482 |
. . . . . . . . . . . . 13
β’ ((π β§ π β (π΄ βm (0..^π))) β π΄ β V) |
19 | 9 | elexi 3467 |
. . . . . . . . . . . . . 14
β’
(0..^π) β
V |
20 | 19 | a1i 11 |
. . . . . . . . . . . . 13
β’ ((π β§ π β (π΄ βm (0..^π))) β (0..^π) β V) |
21 | | simpr 486 |
. . . . . . . . . . . . 13
β’ ((π β§ π β (π΄ βm (0..^π))) β π β (π΄ βm (0..^π))) |
22 | | elmapg 8785 |
. . . . . . . . . . . . . 14
β’ ((π΄ β V β§ (0..^π) β V) β (π β (π΄ βm (0..^π)) β π:(0..^π)βΆπ΄)) |
23 | 22 | biimpa 478 |
. . . . . . . . . . . . 13
β’ (((π΄ β V β§ (0..^π) β V) β§ π β (π΄ βm (0..^π))) β π:(0..^π)βΆπ΄) |
24 | 18, 20, 21, 23 | syl21anc 837 |
. . . . . . . . . . . 12
β’ ((π β§ π β (π΄ βm (0..^π))) β π:(0..^π)βΆπ΄) |
25 | 24 | adantr 482 |
. . . . . . . . . . 11
β’ (((π β§ π β (π΄ βm (0..^π))) β§ π β (0..^π)) β π:(0..^π)βΆπ΄) |
26 | | simpr 486 |
. . . . . . . . . . 11
β’ (((π β§ π β (π΄ βm (0..^π))) β§ π β (0..^π)) β π β (0..^π)) |
27 | 25, 26 | ffvelcdmd 7041 |
. . . . . . . . . 10
β’ (((π β§ π β (π΄ βm (0..^π))) β§ π β (0..^π)) β (πβπ) β π΄) |
28 | 14, 27 | sseldd 3950 |
. . . . . . . . 9
β’ (((π β§ π β (π΄ βm (0..^π))) β§ π β (0..^π)) β (πβπ) β β) |
29 | 10, 28 | fsumrecl 15626 |
. . . . . . . 8
β’ ((π β§ π β (π΄ βm (0..^π))) β Ξ£π β (0..^π)(πβπ) β β) |
30 | | reprlt.1 |
. . . . . . . . 9
β’ (π β π < π) |
31 | 30 | adantr 482 |
. . . . . . . 8
β’ ((π β§ π β (π΄ βm (0..^π))) β π < π) |
32 | | ax-1cn 11116 |
. . . . . . . . . . . . 13
β’ 1 β
β |
33 | | fsumconst 15682 |
. . . . . . . . . . . . 13
β’
(((0..^π) β Fin
β§ 1 β β) β Ξ£π β (0..^π)1 = ((β―β(0..^π)) Β· 1)) |
34 | 9, 32, 33 | mp2an 691 |
. . . . . . . . . . . 12
β’
Ξ£π β
(0..^π)1 =
((β―β(0..^π))
Β· 1) |
35 | | hashcl 14263 |
. . . . . . . . . . . . . . 15
β’
((0..^π) β Fin
β (β―β(0..^π)) β
β0) |
36 | 9, 35 | ax-mp 5 |
. . . . . . . . . . . . . 14
β’
(β―β(0..^π)) β
β0 |
37 | 36 | nn0cni 12432 |
. . . . . . . . . . . . 13
β’
(β―β(0..^π)) β β |
38 | 37 | mulid1i 11166 |
. . . . . . . . . . . 12
β’
((β―β(0..^π)) Β· 1) = (β―β(0..^π)) |
39 | 34, 38 | eqtri 2765 |
. . . . . . . . . . 11
β’
Ξ£π β
(0..^π)1 =
(β―β(0..^π)) |
40 | | hashfzo0 14337 |
. . . . . . . . . . . 12
β’ (π β β0
β (β―β(0..^π)) = π) |
41 | 3, 40 | syl 17 |
. . . . . . . . . . 11
β’ (π β (β―β(0..^π)) = π) |
42 | 39, 41 | eqtrid 2789 |
. . . . . . . . . 10
β’ (π β Ξ£π β (0..^π)1 = π) |
43 | 42 | adantr 482 |
. . . . . . . . 9
β’ ((π β§ π β (π΄ βm (0..^π))) β Ξ£π β (0..^π)1 = π) |
44 | | 1red 11163 |
. . . . . . . . . 10
β’ (((π β§ π β (π΄ βm (0..^π))) β§ π β (0..^π)) β 1 β β) |
45 | 1 | ad2antrr 725 |
. . . . . . . . . . . 12
β’ (((π β§ π β (π΄ βm (0..^π))) β§ π β (0..^π)) β π΄ β β) |
46 | 45, 27 | sseldd 3950 |
. . . . . . . . . . 11
β’ (((π β§ π β (π΄ βm (0..^π))) β§ π β (0..^π)) β (πβπ) β β) |
47 | | nnge1 12188 |
. . . . . . . . . . 11
β’ ((πβπ) β β β 1 β€ (πβπ)) |
48 | 46, 47 | syl 17 |
. . . . . . . . . 10
β’ (((π β§ π β (π΄ βm (0..^π))) β§ π β (0..^π)) β 1 β€ (πβπ)) |
49 | 10, 44, 28, 48 | fsumle 15691 |
. . . . . . . . 9
β’ ((π β§ π β (π΄ βm (0..^π))) β Ξ£π β (0..^π)1 β€ Ξ£π β (0..^π)(πβπ)) |
50 | 43, 49 | eqbrtrrd 5134 |
. . . . . . . 8
β’ ((π β§ π β (π΄ βm (0..^π))) β π β€ Ξ£π β (0..^π)(πβπ)) |
51 | 6, 8, 29, 31, 50 | ltletrd 11322 |
. . . . . . 7
β’ ((π β§ π β (π΄ βm (0..^π))) β π < Ξ£π β (0..^π)(πβπ)) |
52 | 6, 51 | ltned 11298 |
. . . . . 6
β’ ((π β§ π β (π΄ βm (0..^π))) β π β Ξ£π β (0..^π)(πβπ)) |
53 | 52 | necomd 3000 |
. . . . 5
β’ ((π β§ π β (π΄ βm (0..^π))) β Ξ£π β (0..^π)(πβπ) β π) |
54 | 53 | neneqd 2949 |
. . . 4
β’ ((π β§ π β (π΄ βm (0..^π))) β Β¬ Ξ£π β (0..^π)(πβπ) = π) |
55 | 54 | ralrimiva 3144 |
. . 3
β’ (π β βπ β (π΄ βm (0..^π)) Β¬ Ξ£π β (0..^π)(πβπ) = π) |
56 | | rabeq0 4349 |
. . 3
β’ ({π β (π΄ βm (0..^π)) β£ Ξ£π β (0..^π)(πβπ) = π} = β
β βπ β (π΄ βm (0..^π)) Β¬ Ξ£π β (0..^π)(πβπ) = π) |
57 | 55, 56 | sylibr 233 |
. 2
β’ (π β {π β (π΄ βm (0..^π)) β£ Ξ£π β (0..^π)(πβπ) = π} = β
) |
58 | 4, 57 | eqtrd 2777 |
1
β’ (π β (π΄(reprβπ)π) = β
) |