Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reprlt Structured version   Visualization version   GIF version

Theorem reprlt 34583
Description: There are no representations of 𝑀 with more than 𝑀 terms. Remark of [Nathanson] p. 123. (Contributed by Thierry Arnoux, 7-Dec-2021.)
Hypotheses
Ref Expression
reprval.a (𝜑𝐴 ⊆ ℕ)
reprval.m (𝜑𝑀 ∈ ℤ)
reprval.s (𝜑𝑆 ∈ ℕ0)
reprlt.1 (𝜑𝑀 < 𝑆)
Assertion
Ref Expression
reprlt (𝜑 → (𝐴(repr‘𝑆)𝑀) = ∅)

Proof of Theorem reprlt
Dummy variables 𝑐 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reprval.a . . 3 (𝜑𝐴 ⊆ ℕ)
2 reprval.m . . 3 (𝜑𝑀 ∈ ℤ)
3 reprval.s . . 3 (𝜑𝑆 ∈ ℕ0)
41, 2, 3reprval 34574 . 2 (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀})
52zred 12614 . . . . . . . 8 (𝜑𝑀 ∈ ℝ)
65adantr 480 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑀 ∈ ℝ)
73nn0red 12480 . . . . . . . . 9 (𝜑𝑆 ∈ ℝ)
87adantr 480 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑆 ∈ ℝ)
9 fzofi 13915 . . . . . . . . . 10 (0..^𝑆) ∈ Fin
109a1i 11 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → (0..^𝑆) ∈ Fin)
11 nnssre 12166 . . . . . . . . . . . . 13 ℕ ⊆ ℝ
1211a1i 11 . . . . . . . . . . . 12 (𝜑 → ℕ ⊆ ℝ)
131, 12sstrd 3954 . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℝ)
1413ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐴 ⊆ ℝ)
15 nnex 12168 . . . . . . . . . . . . . . . 16 ℕ ∈ V
1615a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ℕ ∈ V)
1716, 1ssexd 5274 . . . . . . . . . . . . . 14 (𝜑𝐴 ∈ V)
1817adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝐴 ∈ V)
199elexi 3467 . . . . . . . . . . . . . 14 (0..^𝑆) ∈ V
2019a1i 11 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → (0..^𝑆) ∈ V)
21 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑐 ∈ (𝐴m (0..^𝑆)))
22 elmapg 8789 . . . . . . . . . . . . . 14 ((𝐴 ∈ V ∧ (0..^𝑆) ∈ V) → (𝑐 ∈ (𝐴m (0..^𝑆)) ↔ 𝑐:(0..^𝑆)⟶𝐴))
2322biimpa 476 . . . . . . . . . . . . 13 (((𝐴 ∈ V ∧ (0..^𝑆) ∈ V) ∧ 𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑐:(0..^𝑆)⟶𝐴)
2418, 20, 21, 23syl21anc 837 . . . . . . . . . . . 12 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑐:(0..^𝑆)⟶𝐴)
2524adantr 480 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑐:(0..^𝑆)⟶𝐴)
26 simpr 484 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑎 ∈ (0..^𝑆))
2725, 26ffvelcdmd 7039 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ 𝐴)
2814, 27sseldd 3944 . . . . . . . . 9 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ ℝ)
2910, 28fsumrecl 15676 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) ∈ ℝ)
30 reprlt.1 . . . . . . . . 9 (𝜑𝑀 < 𝑆)
3130adantr 480 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑀 < 𝑆)
32 ax-1cn 11102 . . . . . . . . . . . . 13 1 ∈ ℂ
33 fsumconst 15732 . . . . . . . . . . . . 13 (((0..^𝑆) ∈ Fin ∧ 1 ∈ ℂ) → Σ𝑎 ∈ (0..^𝑆)1 = ((♯‘(0..^𝑆)) · 1))
349, 32, 33mp2an 692 . . . . . . . . . . . 12 Σ𝑎 ∈ (0..^𝑆)1 = ((♯‘(0..^𝑆)) · 1)
35 hashcl 14297 . . . . . . . . . . . . . . 15 ((0..^𝑆) ∈ Fin → (♯‘(0..^𝑆)) ∈ ℕ0)
369, 35ax-mp 5 . . . . . . . . . . . . . 14 (♯‘(0..^𝑆)) ∈ ℕ0
3736nn0cni 12430 . . . . . . . . . . . . 13 (♯‘(0..^𝑆)) ∈ ℂ
3837mulridi 11154 . . . . . . . . . . . 12 ((♯‘(0..^𝑆)) · 1) = (♯‘(0..^𝑆))
3934, 38eqtri 2752 . . . . . . . . . . 11 Σ𝑎 ∈ (0..^𝑆)1 = (♯‘(0..^𝑆))
40 hashfzo0 14371 . . . . . . . . . . . 12 (𝑆 ∈ ℕ0 → (♯‘(0..^𝑆)) = 𝑆)
413, 40syl 17 . . . . . . . . . . 11 (𝜑 → (♯‘(0..^𝑆)) = 𝑆)
4239, 41eqtrid 2776 . . . . . . . . . 10 (𝜑 → Σ𝑎 ∈ (0..^𝑆)1 = 𝑆)
4342adantr 480 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)1 = 𝑆)
44 1red 11151 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 1 ∈ ℝ)
451ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝐴 ⊆ ℕ)
4645, 27sseldd 3944 . . . . . . . . . . 11 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ ℕ)
47 nnge1 12190 . . . . . . . . . . 11 ((𝑐𝑎) ∈ ℕ → 1 ≤ (𝑐𝑎))
4846, 47syl 17 . . . . . . . . . 10 (((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) ∧ 𝑎 ∈ (0..^𝑆)) → 1 ≤ (𝑐𝑎))
4910, 44, 28, 48fsumle 15741 . . . . . . . . 9 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)1 ≤ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎))
5043, 49eqbrtrrd 5126 . . . . . . . 8 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑆 ≤ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎))
516, 8, 29, 31, 50ltletrd 11310 . . . . . . 7 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑀 < Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎))
526, 51ltned 11286 . . . . . 6 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → 𝑀 ≠ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎))
5352necomd 2980 . . . . 5 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) ≠ 𝑀)
5453neneqd 2930 . . . 4 ((𝜑𝑐 ∈ (𝐴m (0..^𝑆))) → ¬ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)
5554ralrimiva 3125 . . 3 (𝜑 → ∀𝑐 ∈ (𝐴m (0..^𝑆)) ¬ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)
56 rabeq0 4347 . . 3 ({𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀} = ∅ ↔ ∀𝑐 ∈ (𝐴m (0..^𝑆)) ¬ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀)
5755, 56sylibr 234 . 2 (𝜑 → {𝑐 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = 𝑀} = ∅)
584, 57eqtrd 2764 1 (𝜑 → (𝐴(repr‘𝑆)𝑀) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3402  Vcvv 3444  wss 3911  c0 4292   class class class wbr 5102  wf 6495  cfv 6499  (class class class)co 7369  m cmap 8776  Fincfn 8895  cc 11042  cr 11043  0cc0 11044  1c1 11045   · cmul 11049   < clt 11184  cle 11185  cn 12162  0cn0 12418  cz 12505  ..^cfzo 13591  chash 14271  Σcsu 15628  reprcrepr 34572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-ico 13288  df-fz 13445  df-fzo 13592  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-repr 34573
This theorem is referenced by:  breprexplemc  34596
  Copyright terms: Public domain W3C validator