Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cjmulrcl | Structured version Visualization version GIF version |
Description: A complex number times its conjugate is real. (Contributed by NM, 26-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.) |
Ref | Expression |
---|---|
cjmulrcl | ⊢ (𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cjcj 14582 | . . . 4 ⊢ (𝐴 ∈ ℂ → (∗‘(∗‘𝐴)) = 𝐴) | |
2 | 1 | oveq2d 7180 | . . 3 ⊢ (𝐴 ∈ ℂ → ((∗‘𝐴) · (∗‘(∗‘𝐴))) = ((∗‘𝐴) · 𝐴)) |
3 | cjcl 14547 | . . . 4 ⊢ (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ) | |
4 | cjmul 14584 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (∗‘𝐴) ∈ ℂ) → (∗‘(𝐴 · (∗‘𝐴))) = ((∗‘𝐴) · (∗‘(∗‘𝐴)))) | |
5 | 3, 4 | mpdan 687 | . . 3 ⊢ (𝐴 ∈ ℂ → (∗‘(𝐴 · (∗‘𝐴))) = ((∗‘𝐴) · (∗‘(∗‘𝐴)))) |
6 | mulcom 10694 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (∗‘𝐴) ∈ ℂ) → (𝐴 · (∗‘𝐴)) = ((∗‘𝐴) · 𝐴)) | |
7 | 3, 6 | mpdan 687 | . . 3 ⊢ (𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) = ((∗‘𝐴) · 𝐴)) |
8 | 2, 5, 7 | 3eqtr4d 2783 | . 2 ⊢ (𝐴 ∈ ℂ → (∗‘(𝐴 · (∗‘𝐴))) = (𝐴 · (∗‘𝐴))) |
9 | mulcl 10692 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (∗‘𝐴) ∈ ℂ) → (𝐴 · (∗‘𝐴)) ∈ ℂ) | |
10 | 3, 9 | mpdan 687 | . . 3 ⊢ (𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) ∈ ℂ) |
11 | cjreb 14565 | . . 3 ⊢ ((𝐴 · (∗‘𝐴)) ∈ ℂ → ((𝐴 · (∗‘𝐴)) ∈ ℝ ↔ (∗‘(𝐴 · (∗‘𝐴))) = (𝐴 · (∗‘𝐴)))) | |
12 | 10, 11 | syl 17 | . 2 ⊢ (𝐴 ∈ ℂ → ((𝐴 · (∗‘𝐴)) ∈ ℝ ↔ (∗‘(𝐴 · (∗‘𝐴))) = (𝐴 · (∗‘𝐴)))) |
13 | 8, 12 | mpbird 260 | 1 ⊢ (𝐴 ∈ ℂ → (𝐴 · (∗‘𝐴)) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1542 ∈ wcel 2113 ‘cfv 6333 (class class class)co 7164 ℂcc 10606 ℝcr 10607 · cmul 10613 ∗ccj 14538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 ax-resscn 10665 ax-1cn 10666 ax-icn 10667 ax-addcl 10668 ax-addrcl 10669 ax-mulcl 10670 ax-mulrcl 10671 ax-mulcom 10672 ax-addass 10673 ax-mulass 10674 ax-distr 10675 ax-i2m1 10676 ax-1ne0 10677 ax-1rid 10678 ax-rnegex 10679 ax-rrecex 10680 ax-cnre 10681 ax-pre-lttri 10682 ax-pre-lttrn 10683 ax-pre-ltadd 10684 ax-pre-mulgt0 10685 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-op 4520 df-uni 4794 df-br 5028 df-opab 5090 df-mpt 5108 df-id 5425 df-po 5438 df-so 5439 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7121 df-ov 7167 df-oprab 7168 df-mpo 7169 df-er 8313 df-en 8549 df-dom 8550 df-sdom 8551 df-pnf 10748 df-mnf 10749 df-xr 10750 df-ltxr 10751 df-le 10752 df-sub 10943 df-neg 10944 df-div 11369 df-2 11772 df-cj 14541 df-re 14542 df-im 14543 |
This theorem is referenced by: cjmulval 14587 cjmulrcli 14619 cjmulrcld 14648 abscl 14721 absvalsq 14723 absge0 14730 absmul 14737 absfico 42280 sigarid 43897 |
Copyright terms: Public domain | W3C validator |