![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cjmulrcl | Structured version Visualization version GIF version |
Description: A complex number times its conjugate is real. (Contributed by NM, 26-Mar-2005.) (Revised by Mario Carneiro, 14-Jul-2014.) |
Ref | Expression |
---|---|
cjmulrcl | โข (๐ด โ โ โ (๐ด ยท (โโ๐ด)) โ โ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cjcj 15129 | . . . 4 โข (๐ด โ โ โ (โโ(โโ๐ด)) = ๐ด) | |
2 | 1 | oveq2d 7442 | . . 3 โข (๐ด โ โ โ ((โโ๐ด) ยท (โโ(โโ๐ด))) = ((โโ๐ด) ยท ๐ด)) |
3 | cjcl 15094 | . . . 4 โข (๐ด โ โ โ (โโ๐ด) โ โ) | |
4 | cjmul 15131 | . . . 4 โข ((๐ด โ โ โง (โโ๐ด) โ โ) โ (โโ(๐ด ยท (โโ๐ด))) = ((โโ๐ด) ยท (โโ(โโ๐ด)))) | |
5 | 3, 4 | mpdan 685 | . . 3 โข (๐ด โ โ โ (โโ(๐ด ยท (โโ๐ด))) = ((โโ๐ด) ยท (โโ(โโ๐ด)))) |
6 | mulcom 11234 | . . . 4 โข ((๐ด โ โ โง (โโ๐ด) โ โ) โ (๐ด ยท (โโ๐ด)) = ((โโ๐ด) ยท ๐ด)) | |
7 | 3, 6 | mpdan 685 | . . 3 โข (๐ด โ โ โ (๐ด ยท (โโ๐ด)) = ((โโ๐ด) ยท ๐ด)) |
8 | 2, 5, 7 | 3eqtr4d 2778 | . 2 โข (๐ด โ โ โ (โโ(๐ด ยท (โโ๐ด))) = (๐ด ยท (โโ๐ด))) |
9 | mulcl 11232 | . . . 4 โข ((๐ด โ โ โง (โโ๐ด) โ โ) โ (๐ด ยท (โโ๐ด)) โ โ) | |
10 | 3, 9 | mpdan 685 | . . 3 โข (๐ด โ โ โ (๐ด ยท (โโ๐ด)) โ โ) |
11 | cjreb 15112 | . . 3 โข ((๐ด ยท (โโ๐ด)) โ โ โ ((๐ด ยท (โโ๐ด)) โ โ โ (โโ(๐ด ยท (โโ๐ด))) = (๐ด ยท (โโ๐ด)))) | |
12 | 10, 11 | syl 17 | . 2 โข (๐ด โ โ โ ((๐ด ยท (โโ๐ด)) โ โ โ (โโ(๐ด ยท (โโ๐ด))) = (๐ด ยท (โโ๐ด)))) |
13 | 8, 12 | mpbird 256 | 1 โข (๐ด โ โ โ (๐ด ยท (โโ๐ด)) โ โ) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โ wb 205 = wceq 1533 โ wcel 2098 โcfv 6553 (class class class)co 7426 โcc 11146 โcr 11147 ยท cmul 11153 โccj 15085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-po 5594 df-so 5595 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-er 8733 df-en 8973 df-dom 8974 df-sdom 8975 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-div 11912 df-2 12315 df-cj 15088 df-re 15089 df-im 15090 |
This theorem is referenced by: cjmulval 15134 cjmulrcli 15166 cjmulrcld 15195 abscl 15267 absvalsq 15269 absge0 15276 absmul 15283 absfico 44639 sigarid 46293 |
Copyright terms: Public domain | W3C validator |