Users' Mathboxes Mathbox for Saveliy Skresanov < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sigariz Structured version   Visualization version   GIF version

Theorem sigariz 42549
Description: If signed area is zero, the signed area with swapped arguments is also zero. Deduction version. (Contributed by Saveliy Skresanov, 23-Sep-2017.)
Hypotheses
Ref Expression
sigarimcd.sigar 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
sigarimcd.a (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
sigariz.a (𝜑 → (𝐴𝐺𝐵) = 0)
Assertion
Ref Expression
sigariz (𝜑 → (𝐵𝐺𝐴) = 0)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐺(𝑥,𝑦)

Proof of Theorem sigariz
StepHypRef Expression
1 sigariz.a . . . 4 (𝜑 → (𝐴𝐺𝐵) = 0)
2 sigarimcd.a . . . . 5 (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
3 sigarimcd.sigar . . . . . 6 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦)))
43sigarac 42538 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐺𝐵) = -(𝐵𝐺𝐴))
52, 4syl 17 . . . 4 (𝜑 → (𝐴𝐺𝐵) = -(𝐵𝐺𝐴))
61, 5eqtr3d 2817 . . 3 (𝜑 → 0 = -(𝐵𝐺𝐴))
76negeqd 10680 . 2 (𝜑 → -0 = --(𝐵𝐺𝐴))
8 neg0 10733 . . 3 -0 = 0
98a1i 11 . 2 (𝜑 → -0 = 0)
102ancomd 454 . . . 4 (𝜑 → (𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ))
113, 10sigarimcd 42548 . . 3 (𝜑 → (𝐵𝐺𝐴) ∈ ℂ)
1211negnegd 10789 . 2 (𝜑 → --(𝐵𝐺𝐴) = (𝐵𝐺𝐴))
137, 9, 123eqtr3rd 2824 1 (𝜑 → (𝐵𝐺𝐴) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2050  cfv 6188  (class class class)co 6976  cmpo 6978  cc 10333  0cc0 10335   · cmul 10340  -cneg 10671  ccj 14316  cim 14318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-nul 4180  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-br 4930  df-opab 4992  df-mpt 5009  df-id 5312  df-po 5326  df-so 5327  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-er 8089  df-en 8307  df-dom 8308  df-sdom 8309  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-div 11099  df-2 11503  df-cj 14319  df-re 14320  df-im 14321
This theorem is referenced by:  cevathlem2  42554
  Copyright terms: Public domain W3C validator