![]() |
Mathbox for Saveliy Skresanov |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sigariz | Structured version Visualization version GIF version |
Description: If signed area is zero, the signed area with swapped arguments is also zero. Deduction version. (Contributed by Saveliy Skresanov, 23-Sep-2017.) |
Ref | Expression |
---|---|
sigarimcd.sigar | ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) |
sigarimcd.a | ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) |
sigariz.a | ⊢ (𝜑 → (𝐴𝐺𝐵) = 0) |
Ref | Expression |
---|---|
sigariz | ⊢ (𝜑 → (𝐵𝐺𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sigariz.a | . . . 4 ⊢ (𝜑 → (𝐴𝐺𝐵) = 0) | |
2 | sigarimcd.a | . . . . 5 ⊢ (𝜑 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) | |
3 | sigarimcd.sigar | . . . . . 6 ⊢ 𝐺 = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (ℑ‘((∗‘𝑥) · 𝑦))) | |
4 | 3 | sigarac 46836 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐺𝐵) = -(𝐵𝐺𝐴)) |
5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐴𝐺𝐵) = -(𝐵𝐺𝐴)) |
6 | 1, 5 | eqtr3d 2779 | . . 3 ⊢ (𝜑 → 0 = -(𝐵𝐺𝐴)) |
7 | 6 | negeqd 11509 | . 2 ⊢ (𝜑 → -0 = --(𝐵𝐺𝐴)) |
8 | neg0 11562 | . . 3 ⊢ -0 = 0 | |
9 | 8 | a1i 11 | . 2 ⊢ (𝜑 → -0 = 0) |
10 | 2 | ancomd 461 | . . . 4 ⊢ (𝜑 → (𝐵 ∈ ℂ ∧ 𝐴 ∈ ℂ)) |
11 | 3, 10 | sigarimcd 46846 | . . 3 ⊢ (𝜑 → (𝐵𝐺𝐴) ∈ ℂ) |
12 | 11 | negnegd 11618 | . 2 ⊢ (𝜑 → --(𝐵𝐺𝐴) = (𝐵𝐺𝐴)) |
13 | 7, 9, 12 | 3eqtr3rd 2786 | 1 ⊢ (𝜑 → (𝐵𝐺𝐴) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ‘cfv 6569 (class class class)co 7438 ∈ cmpo 7440 ℂcc 11160 0cc0 11162 · cmul 11167 -cneg 11500 ∗ccj 15141 ℑcim 15143 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-po 5601 df-so 5602 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-er 8753 df-en 8994 df-dom 8995 df-sdom 8996 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-div 11928 df-2 12336 df-cj 15144 df-re 15145 df-im 15146 |
This theorem is referenced by: cevathlem2 46852 |
Copyright terms: Public domain | W3C validator |