| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neg0 | Structured version Visualization version GIF version | ||
| Description: Minus 0 equals 0. (Contributed by NM, 17-Jan-1997.) |
| Ref | Expression |
|---|---|
| neg0 | ⊢ -0 = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg 11408 | . 2 ⊢ -0 = (0 − 0) | |
| 2 | 0cn 11166 | . . 3 ⊢ 0 ∈ ℂ | |
| 3 | subid 11441 | . . 3 ⊢ (0 ∈ ℂ → (0 − 0) = 0) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (0 − 0) = 0 |
| 5 | 1, 4 | eqtri 2752 | 1 ⊢ -0 = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7387 ℂcc 11066 0cc0 11068 − cmin 11405 -cneg 11406 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-sub 11407 df-neg 11408 |
| This theorem is referenced by: negeq0 11476 lt0neg1 11684 lt0neg2 11685 le0neg1 11686 le0neg2 11687 elznn0 12544 znegcl 12568 xneg0 13172 expneg 14034 sqeqd 15132 sqrmo 15217 0risefac 16004 sin0 16117 m1bits 16410 lcmneg 16573 pcneg 16845 mulgneg 19024 mulgneg2 19040 pzriprnglem4 21394 iblrelem 25692 itgrevallem1 25696 ditg0 25754 ditgneg 25758 logtayl 26569 dcubic2 26754 atan0 26818 atancj 26820 ppiub 27115 lgsneg1 27233 rpvmasum2 27423 ostth3 27549 argcj 32672 divnumden2 32740 archirngz 33143 elrgspnlem1 33193 ccfldextdgrr 33667 constrrecl 33759 cos9thpiminplylem1 33772 xrge0iif1 33928 fsum2dsub 34598 bj-pinftyccb 37209 bj-minftyccb 37213 itgaddnclem2 37673 ftc1anclem5 37691 areacirc 37707 monotoddzzfi 42931 acongeq 42972 sqwvfourb 46227 etransclem46 46278 sigariz 46861 sigarcol 46862 sigaradd 46864 |
| Copyright terms: Public domain | W3C validator |