Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neg0 | Structured version Visualization version GIF version |
Description: Minus 0 equals 0. (Contributed by NM, 17-Jan-1997.) |
Ref | Expression |
---|---|
neg0 | ⊢ -0 = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-neg 10912 | . 2 ⊢ -0 = (0 − 0) | |
2 | 0cn 10672 | . . 3 ⊢ 0 ∈ ℂ | |
3 | subid 10944 | . . 3 ⊢ (0 ∈ ℂ → (0 − 0) = 0) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (0 − 0) = 0 |
5 | 1, 4 | eqtri 2782 | 1 ⊢ -0 = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2112 (class class class)co 7151 ℂcc 10574 0cc0 10576 − cmin 10909 -cneg 10910 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-resscn 10633 ax-1cn 10634 ax-icn 10635 ax-addcl 10636 ax-addrcl 10637 ax-mulcl 10638 ax-mulrcl 10639 ax-mulcom 10640 ax-addass 10641 ax-mulass 10642 ax-distr 10643 ax-i2m1 10644 ax-1ne0 10645 ax-1rid 10646 ax-rnegex 10647 ax-rrecex 10648 ax-cnre 10649 ax-pre-lttri 10650 ax-pre-lttrn 10651 ax-pre-ltadd 10652 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-po 5444 df-so 5445 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-pnf 10716 df-mnf 10717 df-ltxr 10719 df-sub 10911 df-neg 10912 |
This theorem is referenced by: negeq0 10979 lt0neg1 11185 lt0neg2 11186 le0neg1 11187 le0neg2 11188 neg1lt0 11792 elznn0 12036 znegcl 12057 xneg0 12647 expneg 13488 sqeqd 14574 sqrmo 14660 0risefac 15441 sin0 15551 m1bits 15840 lcmneg 16000 pcneg 16266 mulgneg 18314 mulgneg2 18329 iblrelem 24491 itgrevallem1 24495 ditg0 24553 ditgneg 24557 logtayl 25351 dcubic2 25530 atan0 25594 atancj 25596 ppiub 25888 lgsneg1 26006 rpvmasum2 26196 ostth3 26322 divnumden2 30657 archirngz 30970 ccfldextdgrr 31264 xrge0iif1 31410 fsum2dsub 32107 bj-pinftyccb 34917 bj-minftyccb 34921 itgaddnclem2 35397 ftc1anclem5 35415 areacirc 35431 monotoddzzfi 40257 acongeq 40298 sqwvfourb 43238 etransclem46 43289 sigariz 43844 sigarcol 43845 sigaradd 43847 |
Copyright terms: Public domain | W3C validator |