MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neg0 Structured version   Visualization version   GIF version

Theorem neg0 11468
Description: Minus 0 equals 0. (Contributed by NM, 17-Jan-1997.)
Assertion
Ref Expression
neg0 -0 = 0

Proof of Theorem neg0
StepHypRef Expression
1 df-neg 11408 . 2 -0 = (0 − 0)
2 0cn 11166 . . 3 0 ∈ ℂ
3 subid 11441 . . 3 (0 ∈ ℂ → (0 − 0) = 0)
42, 3ax-mp 5 . 2 (0 − 0) = 0
51, 4eqtri 2752 1 -0 = 0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  (class class class)co 7387  cc 11066  0cc0 11068  cmin 11405  -cneg 11406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-ltxr 11213  df-sub 11407  df-neg 11408
This theorem is referenced by:  negeq0  11476  lt0neg1  11684  lt0neg2  11685  le0neg1  11686  le0neg2  11687  elznn0  12544  znegcl  12568  xneg0  13172  expneg  14034  sqeqd  15132  sqrmo  15217  0risefac  16004  sin0  16117  m1bits  16410  lcmneg  16573  pcneg  16845  mulgneg  19024  mulgneg2  19040  pzriprnglem4  21394  iblrelem  25692  itgrevallem1  25696  ditg0  25754  ditgneg  25758  logtayl  26569  dcubic2  26754  atan0  26818  atancj  26820  ppiub  27115  lgsneg1  27233  rpvmasum2  27423  ostth3  27549  argcj  32672  divnumden2  32740  archirngz  33143  elrgspnlem1  33193  ccfldextdgrr  33667  constrrecl  33759  cos9thpiminplylem1  33772  xrge0iif1  33928  fsum2dsub  34598  bj-pinftyccb  37209  bj-minftyccb  37213  itgaddnclem2  37673  ftc1anclem5  37691  areacirc  37707  monotoddzzfi  42931  acongeq  42972  sqwvfourb  46227  etransclem46  46278  sigariz  46861  sigarcol  46862  sigaradd  46864
  Copyright terms: Public domain W3C validator