| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neg0 | Structured version Visualization version GIF version | ||
| Description: Minus 0 equals 0. (Contributed by NM, 17-Jan-1997.) |
| Ref | Expression |
|---|---|
| neg0 | ⊢ -0 = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg 11415 | . 2 ⊢ -0 = (0 − 0) | |
| 2 | 0cn 11173 | . . 3 ⊢ 0 ∈ ℂ | |
| 3 | subid 11448 | . . 3 ⊢ (0 ∈ ℂ → (0 − 0) = 0) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (0 − 0) = 0 |
| 5 | 1, 4 | eqtri 2753 | 1 ⊢ -0 = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 0cc0 11075 − cmin 11412 -cneg 11413 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-sub 11414 df-neg 11415 |
| This theorem is referenced by: negeq0 11483 lt0neg1 11691 lt0neg2 11692 le0neg1 11693 le0neg2 11694 elznn0 12551 znegcl 12575 xneg0 13179 expneg 14041 sqeqd 15139 sqrmo 15224 0risefac 16011 sin0 16124 m1bits 16417 lcmneg 16580 pcneg 16852 mulgneg 19031 mulgneg2 19047 pzriprnglem4 21401 iblrelem 25699 itgrevallem1 25703 ditg0 25761 ditgneg 25765 logtayl 26576 dcubic2 26761 atan0 26825 atancj 26827 ppiub 27122 lgsneg1 27240 rpvmasum2 27430 ostth3 27556 argcj 32679 divnumden2 32747 archirngz 33150 elrgspnlem1 33200 ccfldextdgrr 33674 constrrecl 33766 cos9thpiminplylem1 33779 xrge0iif1 33935 fsum2dsub 34605 bj-pinftyccb 37216 bj-minftyccb 37220 itgaddnclem2 37680 ftc1anclem5 37698 areacirc 37714 monotoddzzfi 42938 acongeq 42979 sqwvfourb 46234 etransclem46 46285 sigariz 46868 sigarcol 46869 sigaradd 46871 |
| Copyright terms: Public domain | W3C validator |