Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neg0 | Structured version Visualization version GIF version |
Description: Minus 0 equals 0. (Contributed by NM, 17-Jan-1997.) |
Ref | Expression |
---|---|
neg0 | ⊢ -0 = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-neg 11217 | . 2 ⊢ -0 = (0 − 0) | |
2 | 0cn 10976 | . . 3 ⊢ 0 ∈ ℂ | |
3 | subid 11249 | . . 3 ⊢ (0 ∈ ℂ → (0 − 0) = 0) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (0 − 0) = 0 |
5 | 1, 4 | eqtri 2767 | 1 ⊢ -0 = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2107 (class class class)co 7284 ℂcc 10878 0cc0 10880 − cmin 11214 -cneg 11215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-br 5076 df-opab 5138 df-mpt 5159 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-riota 7241 df-ov 7287 df-oprab 7288 df-mpo 7289 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-pnf 11020 df-mnf 11021 df-ltxr 11023 df-sub 11216 df-neg 11217 |
This theorem is referenced by: negeq0 11284 lt0neg1 11490 lt0neg2 11491 le0neg1 11492 le0neg2 11493 neg1lt0 12099 elznn0 12343 znegcl 12364 xneg0 12955 expneg 13799 sqeqd 14886 sqrmo 14972 0risefac 15757 sin0 15867 m1bits 16156 lcmneg 16317 pcneg 16584 mulgneg 18731 mulgneg2 18746 iblrelem 24964 itgrevallem1 24968 ditg0 25026 ditgneg 25030 logtayl 25824 dcubic2 26003 atan0 26067 atancj 26069 ppiub 26361 lgsneg1 26479 rpvmasum2 26669 ostth3 26795 divnumden2 31141 archirngz 31452 ccfldextdgrr 31751 xrge0iif1 31897 fsum2dsub 32596 bj-pinftyccb 35401 bj-minftyccb 35405 itgaddnclem2 35845 ftc1anclem5 35863 areacirc 35879 monotoddzzfi 40771 acongeq 40812 sqwvfourb 43777 etransclem46 43828 sigariz 44390 sigarcol 44391 sigaradd 44393 |
Copyright terms: Public domain | W3C validator |