MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neg0 Structured version   Visualization version   GIF version

Theorem neg0 11553
Description: Minus 0 equals 0. (Contributed by NM, 17-Jan-1997.)
Assertion
Ref Expression
neg0 -0 = 0

Proof of Theorem neg0
StepHypRef Expression
1 df-neg 11493 . 2 -0 = (0 − 0)
2 0cn 11251 . . 3 0 ∈ ℂ
3 subid 11526 . . 3 (0 ∈ ℂ → (0 − 0) = 0)
42, 3ax-mp 5 . 2 (0 − 0) = 0
51, 4eqtri 2763 1 -0 = 0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2106  (class class class)co 7431  cc 11151  0cc0 11153  cmin 11490  -cneg 11491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-ltxr 11298  df-sub 11492  df-neg 11493
This theorem is referenced by:  negeq0  11561  lt0neg1  11767  lt0neg2  11768  le0neg1  11769  le0neg2  11770  neg1lt0  12381  elznn0  12626  znegcl  12650  xneg0  13251  expneg  14107  sqeqd  15202  sqrmo  15287  0risefac  16071  sin0  16182  m1bits  16474  lcmneg  16637  pcneg  16908  mulgneg  19123  mulgneg2  19139  pzriprnglem4  21513  iblrelem  25841  itgrevallem1  25845  ditg0  25903  ditgneg  25907  logtayl  26717  dcubic2  26902  atan0  26966  atancj  26968  ppiub  27263  lgsneg1  27381  rpvmasum2  27571  ostth3  27697  divnumden2  32822  archirngz  33179  elrgspnlem1  33232  ccfldextdgrr  33697  xrge0iif1  33899  fsum2dsub  34601  bj-pinftyccb  37204  bj-minftyccb  37208  itgaddnclem2  37666  ftc1anclem5  37684  areacirc  37700  monotoddzzfi  42931  acongeq  42972  sqwvfourb  46185  etransclem46  46236  sigariz  46819  sigarcol  46820  sigaradd  46822
  Copyright terms: Public domain W3C validator