![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neg0 | Structured version Visualization version GIF version |
Description: Minus 0 equals 0. (Contributed by NM, 17-Jan-1997.) |
Ref | Expression |
---|---|
neg0 | ⊢ -0 = 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-neg 11523 | . 2 ⊢ -0 = (0 − 0) | |
2 | 0cn 11282 | . . 3 ⊢ 0 ∈ ℂ | |
3 | subid 11555 | . . 3 ⊢ (0 ∈ ℂ → (0 − 0) = 0) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (0 − 0) = 0 |
5 | 1, 4 | eqtri 2768 | 1 ⊢ -0 = 0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 (class class class)co 7448 ℂcc 11182 0cc0 11184 − cmin 11520 -cneg 11521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-sub 11522 df-neg 11523 |
This theorem is referenced by: negeq0 11590 lt0neg1 11796 lt0neg2 11797 le0neg1 11798 le0neg2 11799 neg1lt0 12410 elznn0 12654 znegcl 12678 xneg0 13274 expneg 14120 sqeqd 15215 sqrmo 15300 0risefac 16086 sin0 16197 m1bits 16486 lcmneg 16650 pcneg 16921 mulgneg 19132 mulgneg2 19148 pzriprnglem4 21518 iblrelem 25846 itgrevallem1 25850 ditg0 25908 ditgneg 25912 logtayl 26720 dcubic2 26905 atan0 26969 atancj 26971 ppiub 27266 lgsneg1 27384 rpvmasum2 27574 ostth3 27700 divnumden2 32819 archirngz 33169 ccfldextdgrr 33682 xrge0iif1 33884 fsum2dsub 34584 bj-pinftyccb 37187 bj-minftyccb 37191 itgaddnclem2 37639 ftc1anclem5 37657 areacirc 37673 monotoddzzfi 42899 acongeq 42940 sqwvfourb 46150 etransclem46 46201 sigariz 46784 sigarcol 46785 sigaradd 46787 |
Copyright terms: Public domain | W3C validator |