| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neg0 | Structured version Visualization version GIF version | ||
| Description: Minus 0 equals 0. (Contributed by NM, 17-Jan-1997.) |
| Ref | Expression |
|---|---|
| neg0 | ⊢ -0 = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg 11347 | . 2 ⊢ -0 = (0 − 0) | |
| 2 | 0cn 11104 | . . 3 ⊢ 0 ∈ ℂ | |
| 3 | subid 11380 | . . 3 ⊢ (0 ∈ ℂ → (0 − 0) = 0) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (0 − 0) = 0 |
| 5 | 1, 4 | eqtri 2754 | 1 ⊢ -0 = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 (class class class)co 7346 ℂcc 11004 0cc0 11006 − cmin 11344 -cneg 11345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-ltxr 11151 df-sub 11346 df-neg 11347 |
| This theorem is referenced by: negeq0 11415 lt0neg1 11623 lt0neg2 11624 le0neg1 11625 le0neg2 11626 elznn0 12483 znegcl 12507 xneg0 13111 expneg 13976 sqeqd 15073 sqrmo 15158 0risefac 15945 sin0 16058 m1bits 16351 lcmneg 16514 pcneg 16786 mulgneg 19005 mulgneg2 19021 pzriprnglem4 21421 iblrelem 25719 itgrevallem1 25723 ditg0 25781 ditgneg 25785 logtayl 26596 dcubic2 26781 atan0 26845 atancj 26847 ppiub 27142 lgsneg1 27260 rpvmasum2 27450 ostth3 27576 argcj 32732 divnumden2 32798 archirngz 33158 elrgspnlem1 33209 ccfldextdgrr 33685 constrrecl 33782 cos9thpiminplylem1 33795 xrge0iif1 33951 fsum2dsub 34620 bj-pinftyccb 37263 bj-minftyccb 37267 itgaddnclem2 37727 ftc1anclem5 37745 areacirc 37761 monotoddzzfi 42983 acongeq 43024 sqwvfourb 46275 etransclem46 46326 sigariz 46909 sigarcol 46910 sigaradd 46912 |
| Copyright terms: Public domain | W3C validator |