| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neg0 | Structured version Visualization version GIF version | ||
| Description: Minus 0 equals 0. (Contributed by NM, 17-Jan-1997.) |
| Ref | Expression |
|---|---|
| neg0 | ⊢ -0 = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg 11461 | . 2 ⊢ -0 = (0 − 0) | |
| 2 | 0cn 11219 | . . 3 ⊢ 0 ∈ ℂ | |
| 3 | subid 11494 | . . 3 ⊢ (0 ∈ ℂ → (0 − 0) = 0) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (0 − 0) = 0 |
| 5 | 1, 4 | eqtri 2757 | 1 ⊢ -0 = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 (class class class)co 7399 ℂcc 11119 0cc0 11121 − cmin 11458 -cneg 11459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-po 5558 df-so 5559 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-er 8713 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11263 df-mnf 11264 df-ltxr 11266 df-sub 11460 df-neg 11461 |
| This theorem is referenced by: negeq0 11529 lt0neg1 11735 lt0neg2 11736 le0neg1 11737 le0neg2 11738 neg1lt0 12349 elznn0 12595 znegcl 12619 xneg0 13220 expneg 14076 sqeqd 15172 sqrmo 15257 0risefac 16041 sin0 16152 m1bits 16444 lcmneg 16607 pcneg 16879 mulgneg 19060 mulgneg2 19076 pzriprnglem4 21430 iblrelem 25729 itgrevallem1 25733 ditg0 25791 ditgneg 25795 logtayl 26605 dcubic2 26790 atan0 26854 atancj 26856 ppiub 27151 lgsneg1 27269 rpvmasum2 27459 ostth3 27585 argcj 32659 divnumden2 32727 archirngz 33105 elrgspnlem1 33155 ccfldextdgrr 33629 constrrecl 33719 xrge0iif1 33877 fsum2dsub 34560 bj-pinftyccb 37160 bj-minftyccb 37164 itgaddnclem2 37624 ftc1anclem5 37642 areacirc 37658 monotoddzzfi 42891 acongeq 42932 sqwvfourb 46188 etransclem46 46239 sigariz 46822 sigarcol 46823 sigaradd 46825 |
| Copyright terms: Public domain | W3C validator |