| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neg0 | Structured version Visualization version GIF version | ||
| Description: Minus 0 equals 0. (Contributed by NM, 17-Jan-1997.) |
| Ref | Expression |
|---|---|
| neg0 | ⊢ -0 = 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-neg 11469 | . 2 ⊢ -0 = (0 − 0) | |
| 2 | 0cn 11227 | . . 3 ⊢ 0 ∈ ℂ | |
| 3 | subid 11502 | . . 3 ⊢ (0 ∈ ℂ → (0 − 0) = 0) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (0 − 0) = 0 |
| 5 | 1, 4 | eqtri 2758 | 1 ⊢ -0 = 0 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 (class class class)co 7405 ℂcc 11127 0cc0 11129 − cmin 11466 -cneg 11467 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-ltxr 11274 df-sub 11468 df-neg 11469 |
| This theorem is referenced by: negeq0 11537 lt0neg1 11743 lt0neg2 11744 le0neg1 11745 le0neg2 11746 neg1lt0 12357 elznn0 12603 znegcl 12627 xneg0 13228 expneg 14087 sqeqd 15185 sqrmo 15270 0risefac 16054 sin0 16167 m1bits 16459 lcmneg 16622 pcneg 16894 mulgneg 19075 mulgneg2 19091 pzriprnglem4 21445 iblrelem 25744 itgrevallem1 25748 ditg0 25806 ditgneg 25810 logtayl 26621 dcubic2 26806 atan0 26870 atancj 26872 ppiub 27167 lgsneg1 27285 rpvmasum2 27475 ostth3 27601 argcj 32726 divnumden2 32794 archirngz 33187 elrgspnlem1 33237 ccfldextdgrr 33713 constrrecl 33803 cos9thpiminplylem1 33816 xrge0iif1 33969 fsum2dsub 34639 bj-pinftyccb 37239 bj-minftyccb 37243 itgaddnclem2 37703 ftc1anclem5 37721 areacirc 37737 monotoddzzfi 42966 acongeq 43007 sqwvfourb 46258 etransclem46 46309 sigariz 46892 sigarcol 46893 sigaradd 46895 |
| Copyright terms: Public domain | W3C validator |