Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-addid2 Structured version   Visualization version   GIF version

Theorem sn-addid2 40095
Description: addid2 11015 without ax-mulcom 10793. (Contributed by SN, 23-Jan-2024.)
Assertion
Ref Expression
sn-addid2 (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴)

Proof of Theorem sn-addid2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 10830 . 2 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
2 0cnd 10826 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 0 ∈ ℂ)
3 simp2l 1201 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑥 ∈ ℝ)
43recnd 10861 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑥 ∈ ℂ)
5 ax-icn 10788 . . . . . . . . 9 i ∈ ℂ
65a1i 11 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → i ∈ ℂ)
7 simp2r 1202 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑦 ∈ ℝ)
87recnd 10861 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝑦 ∈ ℂ)
96, 8mulcld 10853 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (i · 𝑦) ∈ ℂ)
102, 4, 9addassd 10855 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((0 + 𝑥) + (i · 𝑦)) = (0 + (𝑥 + (i · 𝑦))))
11 readdid2 40094 . . . . . . . . 9 (𝑥 ∈ ℝ → (0 + 𝑥) = 𝑥)
1211adantr 484 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (0 + 𝑥) = 𝑥)
13123ad2ant2 1136 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (0 + 𝑥) = 𝑥)
1413oveq1d 7228 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → ((0 + 𝑥) + (i · 𝑦)) = (𝑥 + (i · 𝑦)))
1510, 14eqtr3d 2779 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (0 + (𝑥 + (i · 𝑦))) = (𝑥 + (i · 𝑦)))
16 simp3 1140 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → 𝐴 = (𝑥 + (i · 𝑦)))
1716oveq2d 7229 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (0 + 𝐴) = (0 + (𝑥 + (i · 𝑦))))
1815, 17, 163eqtr4d 2787 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ 𝐴 = (𝑥 + (i · 𝑦))) → (0 + 𝐴) = 𝐴)
19183exp 1121 . . 3 (𝐴 ∈ ℂ → ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝐴 = (𝑥 + (i · 𝑦)) → (0 + 𝐴) = 𝐴)))
2019rexlimdvv 3212 . 2 (𝐴 ∈ ℂ → (∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)) → (0 + 𝐴) = 𝐴))
211, 20mpd 15 1 (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  wrex 3062  (class class class)co 7213  cc 10727  cr 10728  0cc0 10729  ici 10731   + caddc 10732   · cmul 10734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-po 5468  df-so 5469  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-ltxr 10872  df-resub 40057
This theorem is referenced by:  sn-it0e0  40105  sn-negex12  40106  sn-addcand  40109  sn-subeu  40116  sn-0tie0  40129  cnreeu  40146
  Copyright terms: Public domain W3C validator