MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addid2 Structured version   Visualization version   GIF version

Theorem addid2 11338
Description: 0 is a left identity for addition. This used to be one of our complex number axioms, until it was discovered that it was dependent on the others. Based on ideas by Eric Schmidt. (Contributed by Scott Fenton, 3-Jan-2013.)
Assertion
Ref Expression
addid2 (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴)

Proof of Theorem addid2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnegex 11336 . 2 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝐴 + 𝑥) = 0)
2 cnegex 11336 . . . 4 (𝑥 ∈ ℂ → ∃𝑦 ∈ ℂ (𝑥 + 𝑦) = 0)
32ad2antrl 726 . . 3 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0)) → ∃𝑦 ∈ ℂ (𝑥 + 𝑦) = 0)
4 0cn 11147 . . . . . . . . . 10 0 ∈ ℂ
5 addass 11138 . . . . . . . . . 10 ((0 ∈ ℂ ∧ 0 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((0 + 0) + 𝑦) = (0 + (0 + 𝑦)))
64, 4, 5mp3an12 1451 . . . . . . . . 9 (𝑦 ∈ ℂ → ((0 + 0) + 𝑦) = (0 + (0 + 𝑦)))
76adantr 481 . . . . . . . 8 ((𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0) → ((0 + 0) + 𝑦) = (0 + (0 + 𝑦)))
873ad2ant3 1135 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0) ∧ (𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0)) → ((0 + 0) + 𝑦) = (0 + (0 + 𝑦)))
9 00id 11330 . . . . . . . . 9 (0 + 0) = 0
109oveq1i 7367 . . . . . . . 8 ((0 + 0) + 𝑦) = (0 + 𝑦)
11 simp1 1136 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0) ∧ (𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0)) → 𝐴 ∈ ℂ)
12 simp2l 1199 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0) ∧ (𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0)) → 𝑥 ∈ ℂ)
13 simp3l 1201 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0) ∧ (𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0)) → 𝑦 ∈ ℂ)
1411, 12, 13addassd 11177 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0) ∧ (𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0)) → ((𝐴 + 𝑥) + 𝑦) = (𝐴 + (𝑥 + 𝑦)))
15 simp2r 1200 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0) ∧ (𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0)) → (𝐴 + 𝑥) = 0)
1615oveq1d 7372 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0) ∧ (𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0)) → ((𝐴 + 𝑥) + 𝑦) = (0 + 𝑦))
17 simp3r 1202 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0) ∧ (𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0)) → (𝑥 + 𝑦) = 0)
1817oveq2d 7373 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0) ∧ (𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0)) → (𝐴 + (𝑥 + 𝑦)) = (𝐴 + 0))
1914, 16, 183eqtr3rd 2785 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0) ∧ (𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0)) → (𝐴 + 0) = (0 + 𝑦))
20 addid1 11335 . . . . . . . . . 10 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
21203ad2ant1 1133 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0) ∧ (𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0)) → (𝐴 + 0) = 𝐴)
2219, 21eqtr3d 2778 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0) ∧ (𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0)) → (0 + 𝑦) = 𝐴)
2310, 22eqtrid 2788 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0) ∧ (𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0)) → ((0 + 0) + 𝑦) = 𝐴)
2422oveq2d 7373 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0) ∧ (𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0)) → (0 + (0 + 𝑦)) = (0 + 𝐴))
258, 23, 243eqtr3rd 2785 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0) ∧ (𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0)) → (0 + 𝐴) = 𝐴)
26253expia 1121 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0)) → ((𝑦 ∈ ℂ ∧ (𝑥 + 𝑦) = 0) → (0 + 𝐴) = 𝐴))
2726expd 416 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0)) → (𝑦 ∈ ℂ → ((𝑥 + 𝑦) = 0 → (0 + 𝐴) = 𝐴)))
2827rexlimdv 3150 . . 3 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0)) → (∃𝑦 ∈ ℂ (𝑥 + 𝑦) = 0 → (0 + 𝐴) = 𝐴))
293, 28mpd 15 . 2 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ (𝐴 + 𝑥) = 0)) → (0 + 𝐴) = 𝐴)
301, 29rexlimddv 3158 1 (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3073  (class class class)co 7357  cc 11049  0cc0 11051   + caddc 11054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-po 5545  df-so 5546  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-ltxr 11194
This theorem is referenced by:  addcan  11339  addid2i  11343  addid2d  11356  negneg  11451  fz0to4untppr  13544  fzo0addel  13626  fzoaddel2  13628  divfl0  13729  modid  13801  modsumfzodifsn  13849  swrdspsleq  14553  swrds1  14554  isercolllem3  15551  sumrblem  15596  summolem2a  15600  fsum0diag2  15668  eftlub  15991  gcdid  16407  cnaddablx  19646  cnaddabl  19647  cnaddid  19648  cncrng  20818  cnlmod  24503  ptolemy  25853  logtayl  26015  leibpilem2  26291  axcontlem2  27914  cnaddabloOLD  29523  cnidOLD  29524  dvcosax  44157  2zrngamnd  46229  aacllem  47238
  Copyright terms: Public domain W3C validator