Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-itrere Structured version   Visualization version   GIF version

Theorem sn-itrere 42503
Description: i times a real is real iff the real is zero. (Contributed by SN, 27-Jun-2024.)
Assertion
Ref Expression
sn-itrere (𝑅 ∈ ℝ → ((i · 𝑅) ∈ ℝ ↔ 𝑅 = 0))

Proof of Theorem sn-itrere
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ax-rrecex 11228 . . . . 5 ((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) → ∃𝑥 ∈ ℝ (𝑅 · 𝑥) = 1)
2 sn-inelr 42502 . . . . . 6 ¬ i ∈ ℝ
3 ax-icn 11215 . . . . . . . . . . 11 i ∈ ℂ
43a1i 11 . . . . . . . . . 10 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (i · 𝑅) ∈ ℝ) → i ∈ ℂ)
5 simplll 774 . . . . . . . . . . 11 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (i · 𝑅) ∈ ℝ) → 𝑅 ∈ ℝ)
65recnd 11290 . . . . . . . . . 10 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (i · 𝑅) ∈ ℝ) → 𝑅 ∈ ℂ)
7 simplrl 776 . . . . . . . . . . 11 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (i · 𝑅) ∈ ℝ) → 𝑥 ∈ ℝ)
87recnd 11290 . . . . . . . . . 10 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (i · 𝑅) ∈ ℝ) → 𝑥 ∈ ℂ)
94, 6, 8mulassd 11285 . . . . . . . . 9 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (i · 𝑅) ∈ ℝ) → ((i · 𝑅) · 𝑥) = (i · (𝑅 · 𝑥)))
10 simplrr 777 . . . . . . . . . 10 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (i · 𝑅) ∈ ℝ) → (𝑅 · 𝑥) = 1)
1110oveq2d 7448 . . . . . . . . 9 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (i · 𝑅) ∈ ℝ) → (i · (𝑅 · 𝑥)) = (i · 1))
12 sn-it1ei 42471 . . . . . . . . . 10 (i · 1) = i
1312a1i 11 . . . . . . . . 9 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (i · 𝑅) ∈ ℝ) → (i · 1) = i)
149, 11, 133eqtrd 2780 . . . . . . . 8 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (i · 𝑅) ∈ ℝ) → ((i · 𝑅) · 𝑥) = i)
15 simpr 484 . . . . . . . . 9 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (i · 𝑅) ∈ ℝ) → (i · 𝑅) ∈ ℝ)
1615, 7remulcld 11292 . . . . . . . 8 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (i · 𝑅) ∈ ℝ) → ((i · 𝑅) · 𝑥) ∈ ℝ)
1714, 16eqeltrrd 2841 . . . . . . 7 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (i · 𝑅) ∈ ℝ) → i ∈ ℝ)
1817ex 412 . . . . . 6 (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) → ((i · 𝑅) ∈ ℝ → i ∈ ℝ))
192, 18mtoi 199 . . . . 5 (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) → ¬ (i · 𝑅) ∈ ℝ)
201, 19rexlimddv 3160 . . . 4 ((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) → ¬ (i · 𝑅) ∈ ℝ)
2120ex 412 . . 3 (𝑅 ∈ ℝ → (𝑅 ≠ 0 → ¬ (i · 𝑅) ∈ ℝ))
2221necon4ad 2958 . 2 (𝑅 ∈ ℝ → ((i · 𝑅) ∈ ℝ → 𝑅 = 0))
23 oveq2 7440 . . 3 (𝑅 = 0 → (i · 𝑅) = (i · 0))
24 sn-it0e0 42450 . . . 4 (i · 0) = 0
25 0re 11264 . . . 4 0 ∈ ℝ
2624, 25eqeltri 2836 . . 3 (i · 0) ∈ ℝ
2723, 26eqeltrdi 2848 . 2 (𝑅 = 0 → (i · 𝑅) ∈ ℝ)
2822, 27impbid1 225 1 (𝑅 ∈ ℝ → ((i · 𝑅) ∈ ℝ ↔ 𝑅 = 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2939  (class class class)co 7432  cc 11154  cr 11155  0cc0 11156  1c1 11157  ici 11158   · cmul 11161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-po 5591  df-so 5592  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-ltxr 11301  df-2 12330  df-3 12331  df-resub 42401
This theorem is referenced by:  cnreeu  42505
  Copyright terms: Public domain W3C validator