Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-itrere Structured version   Visualization version   GIF version

Theorem sn-itrere 42469
Description: i times a real is real iff the real is zero. (Contributed by SN, 27-Jun-2024.)
Assertion
Ref Expression
sn-itrere (𝑅 ∈ ℝ → ((i · 𝑅) ∈ ℝ ↔ 𝑅 = 0))

Proof of Theorem sn-itrere
StepHypRef Expression
1 sn-inelr 42468 . . . . 5 ¬ i ∈ ℝ
2 ax-icn 11103 . . . . . . . . . 10 i ∈ ℂ
32a1i 11 . . . . . . . . 9 (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (i · 𝑅) ∈ ℝ) → i ∈ ℂ)
4 simpll 766 . . . . . . . . . 10 (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (i · 𝑅) ∈ ℝ) → 𝑅 ∈ ℝ)
54recnd 11178 . . . . . . . . 9 (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (i · 𝑅) ∈ ℝ) → 𝑅 ∈ ℂ)
6 simplr 768 . . . . . . . . . . 11 (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (i · 𝑅) ∈ ℝ) → 𝑅 ≠ 0)
74, 6sn-rereccld 42429 . . . . . . . . . 10 (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (i · 𝑅) ∈ ℝ) → (1 / 𝑅) ∈ ℝ)
87recnd 11178 . . . . . . . . 9 (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (i · 𝑅) ∈ ℝ) → (1 / 𝑅) ∈ ℂ)
93, 5, 8mulassd 11173 . . . . . . . 8 (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (i · 𝑅) ∈ ℝ) → ((i · 𝑅) · (1 / 𝑅)) = (i · (𝑅 · (1 / 𝑅))))
104, 6rerecid 42430 . . . . . . . . 9 (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (i · 𝑅) ∈ ℝ) → (𝑅 · (1 / 𝑅)) = 1)
1110oveq2d 7385 . . . . . . . 8 (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (i · 𝑅) ∈ ℝ) → (i · (𝑅 · (1 / 𝑅))) = (i · 1))
12 sn-it1ei 42418 . . . . . . . . 9 (i · 1) = i
1312a1i 11 . . . . . . . 8 (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (i · 𝑅) ∈ ℝ) → (i · 1) = i)
149, 11, 133eqtrd 2768 . . . . . . 7 (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (i · 𝑅) ∈ ℝ) → ((i · 𝑅) · (1 / 𝑅)) = i)
15 simpr 484 . . . . . . . 8 (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (i · 𝑅) ∈ ℝ) → (i · 𝑅) ∈ ℝ)
1615, 7remulcld 11180 . . . . . . 7 (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (i · 𝑅) ∈ ℝ) → ((i · 𝑅) · (1 / 𝑅)) ∈ ℝ)
1714, 16eqeltrrd 2829 . . . . . 6 (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (i · 𝑅) ∈ ℝ) → i ∈ ℝ)
1817ex 412 . . . . 5 ((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) → ((i · 𝑅) ∈ ℝ → i ∈ ℝ))
191, 18mtoi 199 . . . 4 ((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) → ¬ (i · 𝑅) ∈ ℝ)
2019ex 412 . . 3 (𝑅 ∈ ℝ → (𝑅 ≠ 0 → ¬ (i · 𝑅) ∈ ℝ))
2120necon4ad 2944 . 2 (𝑅 ∈ ℝ → ((i · 𝑅) ∈ ℝ → 𝑅 = 0))
22 oveq2 7377 . . 3 (𝑅 = 0 → (i · 𝑅) = (i · 0))
23 sn-it0e0 42397 . . . 4 (i · 0) = 0
24 0re 11152 . . . 4 0 ∈ ℝ
2523, 24eqeltri 2824 . . 3 (i · 0) ∈ ℝ
2622, 25eqeltrdi 2836 . 2 (𝑅 = 0 → (i · 𝑅) ∈ ℝ)
2721, 26impbid1 225 1 (𝑅 ∈ ℝ → ((i · 𝑅) ∈ ℝ ↔ 𝑅 = 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045  ici 11046   · cmul 11049   / crediv 42421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-2 12225  df-3 12226  df-resub 42347  df-rediv 42422
This theorem is referenced by:  cnreeu  42471
  Copyright terms: Public domain W3C validator