Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-itrere Structured version   Visualization version   GIF version

Theorem sn-itrere 42444
Description: i times a real is real iff the real is zero. (Contributed by SN, 27-Jun-2024.)
Assertion
Ref Expression
sn-itrere (𝑅 ∈ ℝ → ((i · 𝑅) ∈ ℝ ↔ 𝑅 = 0))

Proof of Theorem sn-itrere
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ax-rrecex 11256 . . . . 5 ((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) → ∃𝑥 ∈ ℝ (𝑅 · 𝑥) = 1)
2 sn-inelr 42443 . . . . . 6 ¬ i ∈ ℝ
3 ax-icn 11243 . . . . . . . . . . 11 i ∈ ℂ
43a1i 11 . . . . . . . . . 10 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (i · 𝑅) ∈ ℝ) → i ∈ ℂ)
5 simplll 774 . . . . . . . . . . 11 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (i · 𝑅) ∈ ℝ) → 𝑅 ∈ ℝ)
65recnd 11318 . . . . . . . . . 10 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (i · 𝑅) ∈ ℝ) → 𝑅 ∈ ℂ)
7 simplrl 776 . . . . . . . . . . 11 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (i · 𝑅) ∈ ℝ) → 𝑥 ∈ ℝ)
87recnd 11318 . . . . . . . . . 10 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (i · 𝑅) ∈ ℝ) → 𝑥 ∈ ℂ)
94, 6, 8mulassd 11313 . . . . . . . . 9 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (i · 𝑅) ∈ ℝ) → ((i · 𝑅) · 𝑥) = (i · (𝑅 · 𝑥)))
10 simplrr 777 . . . . . . . . . 10 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (i · 𝑅) ∈ ℝ) → (𝑅 · 𝑥) = 1)
1110oveq2d 7464 . . . . . . . . 9 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (i · 𝑅) ∈ ℝ) → (i · (𝑅 · 𝑥)) = (i · 1))
12 sn-it1ei 42412 . . . . . . . . . 10 (i · 1) = i
1312a1i 11 . . . . . . . . 9 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (i · 𝑅) ∈ ℝ) → (i · 1) = i)
149, 11, 133eqtrd 2784 . . . . . . . 8 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (i · 𝑅) ∈ ℝ) → ((i · 𝑅) · 𝑥) = i)
15 simpr 484 . . . . . . . . 9 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (i · 𝑅) ∈ ℝ) → (i · 𝑅) ∈ ℝ)
1615, 7remulcld 11320 . . . . . . . 8 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (i · 𝑅) ∈ ℝ) → ((i · 𝑅) · 𝑥) ∈ ℝ)
1714, 16eqeltrrd 2845 . . . . . . 7 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (i · 𝑅) ∈ ℝ) → i ∈ ℝ)
1817ex 412 . . . . . 6 (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) → ((i · 𝑅) ∈ ℝ → i ∈ ℝ))
192, 18mtoi 199 . . . . 5 (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) → ¬ (i · 𝑅) ∈ ℝ)
201, 19rexlimddv 3167 . . . 4 ((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) → ¬ (i · 𝑅) ∈ ℝ)
2120ex 412 . . 3 (𝑅 ∈ ℝ → (𝑅 ≠ 0 → ¬ (i · 𝑅) ∈ ℝ))
2221necon4ad 2965 . 2 (𝑅 ∈ ℝ → ((i · 𝑅) ∈ ℝ → 𝑅 = 0))
23 oveq2 7456 . . 3 (𝑅 = 0 → (i · 𝑅) = (i · 0))
24 sn-it0e0 42391 . . . 4 (i · 0) = 0
25 0re 11292 . . . 4 0 ∈ ℝ
2624, 25eqeltri 2840 . . 3 (i · 0) ∈ ℝ
2723, 26eqeltrdi 2852 . 2 (𝑅 = 0 → (i · 𝑅) ∈ ℝ)
2822, 27impbid1 225 1 (𝑅 ∈ ℝ → ((i · 𝑅) ∈ ℝ ↔ 𝑅 = 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185  ici 11186   · cmul 11189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-ltxr 11329  df-2 12356  df-3 12357  df-resub 42342
This theorem is referenced by:  cnreeu  42446
  Copyright terms: Public domain W3C validator