| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sn-itrere | Structured version Visualization version GIF version | ||
| Description: i times a real is real iff the real is zero. (Contributed by SN, 27-Jun-2024.) |
| Ref | Expression |
|---|---|
| sn-itrere | ⊢ (𝑅 ∈ ℝ → ((i · 𝑅) ∈ ℝ ↔ 𝑅 = 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sn-inelr 42475 | . . . . 5 ⊢ ¬ i ∈ ℝ | |
| 2 | ax-icn 11127 | . . . . . . . . . 10 ⊢ i ∈ ℂ | |
| 3 | 2 | a1i 11 | . . . . . . . . 9 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (i · 𝑅) ∈ ℝ) → i ∈ ℂ) |
| 4 | simpll 766 | . . . . . . . . . 10 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (i · 𝑅) ∈ ℝ) → 𝑅 ∈ ℝ) | |
| 5 | 4 | recnd 11202 | . . . . . . . . 9 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (i · 𝑅) ∈ ℝ) → 𝑅 ∈ ℂ) |
| 6 | simplr 768 | . . . . . . . . . . 11 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (i · 𝑅) ∈ ℝ) → 𝑅 ≠ 0) | |
| 7 | 4, 6 | sn-rereccld 42436 | . . . . . . . . . 10 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (i · 𝑅) ∈ ℝ) → (1 /ℝ 𝑅) ∈ ℝ) |
| 8 | 7 | recnd 11202 | . . . . . . . . 9 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (i · 𝑅) ∈ ℝ) → (1 /ℝ 𝑅) ∈ ℂ) |
| 9 | 3, 5, 8 | mulassd 11197 | . . . . . . . 8 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (i · 𝑅) ∈ ℝ) → ((i · 𝑅) · (1 /ℝ 𝑅)) = (i · (𝑅 · (1 /ℝ 𝑅)))) |
| 10 | 4, 6 | rerecid 42437 | . . . . . . . . 9 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (i · 𝑅) ∈ ℝ) → (𝑅 · (1 /ℝ 𝑅)) = 1) |
| 11 | 10 | oveq2d 7403 | . . . . . . . 8 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (i · 𝑅) ∈ ℝ) → (i · (𝑅 · (1 /ℝ 𝑅))) = (i · 1)) |
| 12 | sn-it1ei 42425 | . . . . . . . . 9 ⊢ (i · 1) = i | |
| 13 | 12 | a1i 11 | . . . . . . . 8 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (i · 𝑅) ∈ ℝ) → (i · 1) = i) |
| 14 | 9, 11, 13 | 3eqtrd 2768 | . . . . . . 7 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (i · 𝑅) ∈ ℝ) → ((i · 𝑅) · (1 /ℝ 𝑅)) = i) |
| 15 | simpr 484 | . . . . . . . 8 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (i · 𝑅) ∈ ℝ) → (i · 𝑅) ∈ ℝ) | |
| 16 | 15, 7 | remulcld 11204 | . . . . . . 7 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (i · 𝑅) ∈ ℝ) → ((i · 𝑅) · (1 /ℝ 𝑅)) ∈ ℝ) |
| 17 | 14, 16 | eqeltrrd 2829 | . . . . . 6 ⊢ (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (i · 𝑅) ∈ ℝ) → i ∈ ℝ) |
| 18 | 17 | ex 412 | . . . . 5 ⊢ ((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) → ((i · 𝑅) ∈ ℝ → i ∈ ℝ)) |
| 19 | 1, 18 | mtoi 199 | . . . 4 ⊢ ((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) → ¬ (i · 𝑅) ∈ ℝ) |
| 20 | 19 | ex 412 | . . 3 ⊢ (𝑅 ∈ ℝ → (𝑅 ≠ 0 → ¬ (i · 𝑅) ∈ ℝ)) |
| 21 | 20 | necon4ad 2944 | . 2 ⊢ (𝑅 ∈ ℝ → ((i · 𝑅) ∈ ℝ → 𝑅 = 0)) |
| 22 | oveq2 7395 | . . 3 ⊢ (𝑅 = 0 → (i · 𝑅) = (i · 0)) | |
| 23 | sn-it0e0 42404 | . . . 4 ⊢ (i · 0) = 0 | |
| 24 | 0re 11176 | . . . 4 ⊢ 0 ∈ ℝ | |
| 25 | 23, 24 | eqeltri 2824 | . . 3 ⊢ (i · 0) ∈ ℝ |
| 26 | 22, 25 | eqeltrdi 2836 | . 2 ⊢ (𝑅 = 0 → (i · 𝑅) ∈ ℝ) |
| 27 | 21, 26 | impbid1 225 | 1 ⊢ (𝑅 ∈ ℝ → ((i · 𝑅) ∈ ℝ ↔ 𝑅 = 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 (class class class)co 7387 ℂcc 11066 ℝcr 11067 0cc0 11068 1c1 11069 ici 11070 · cmul 11073 /ℝ crediv 42428 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-2 12249 df-3 12250 df-resub 42354 df-rediv 42429 |
| This theorem is referenced by: cnreeu 42478 |
| Copyright terms: Public domain | W3C validator |