Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sn-itrere Structured version   Visualization version   GIF version

Theorem sn-itrere 42248
Description: i times a real is real iff the real is zero. (Contributed by SN, 27-Jun-2024.)
Assertion
Ref Expression
sn-itrere (𝑅 ∈ ℝ → ((i · 𝑅) ∈ ℝ ↔ 𝑅 = 0))

Proof of Theorem sn-itrere
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ax-rrecex 11230 . . . . 5 ((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) → ∃𝑥 ∈ ℝ (𝑅 · 𝑥) = 1)
2 sn-inelr 42247 . . . . . 6 ¬ i ∈ ℝ
3 ax-icn 11217 . . . . . . . . . . 11 i ∈ ℂ
43a1i 11 . . . . . . . . . 10 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (i · 𝑅) ∈ ℝ) → i ∈ ℂ)
5 simplll 773 . . . . . . . . . . 11 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (i · 𝑅) ∈ ℝ) → 𝑅 ∈ ℝ)
65recnd 11292 . . . . . . . . . 10 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (i · 𝑅) ∈ ℝ) → 𝑅 ∈ ℂ)
7 simplrl 775 . . . . . . . . . . 11 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (i · 𝑅) ∈ ℝ) → 𝑥 ∈ ℝ)
87recnd 11292 . . . . . . . . . 10 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (i · 𝑅) ∈ ℝ) → 𝑥 ∈ ℂ)
94, 6, 8mulassd 11287 . . . . . . . . 9 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (i · 𝑅) ∈ ℝ) → ((i · 𝑅) · 𝑥) = (i · (𝑅 · 𝑥)))
10 simplrr 776 . . . . . . . . . 10 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (i · 𝑅) ∈ ℝ) → (𝑅 · 𝑥) = 1)
1110oveq2d 7440 . . . . . . . . 9 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (i · 𝑅) ∈ ℝ) → (i · (𝑅 · 𝑥)) = (i · 1))
12 sn-it1ei 42216 . . . . . . . . . 10 (i · 1) = i
1312a1i 11 . . . . . . . . 9 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (i · 𝑅) ∈ ℝ) → (i · 1) = i)
149, 11, 133eqtrd 2770 . . . . . . . 8 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (i · 𝑅) ∈ ℝ) → ((i · 𝑅) · 𝑥) = i)
15 simpr 483 . . . . . . . . 9 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (i · 𝑅) ∈ ℝ) → (i · 𝑅) ∈ ℝ)
1615, 7remulcld 11294 . . . . . . . 8 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (i · 𝑅) ∈ ℝ) → ((i · 𝑅) · 𝑥) ∈ ℝ)
1714, 16eqeltrrd 2827 . . . . . . 7 ((((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) ∧ (i · 𝑅) ∈ ℝ) → i ∈ ℝ)
1817ex 411 . . . . . 6 (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) → ((i · 𝑅) ∈ ℝ → i ∈ ℝ))
192, 18mtoi 198 . . . . 5 (((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) ∧ (𝑥 ∈ ℝ ∧ (𝑅 · 𝑥) = 1)) → ¬ (i · 𝑅) ∈ ℝ)
201, 19rexlimddv 3151 . . . 4 ((𝑅 ∈ ℝ ∧ 𝑅 ≠ 0) → ¬ (i · 𝑅) ∈ ℝ)
2120ex 411 . . 3 (𝑅 ∈ ℝ → (𝑅 ≠ 0 → ¬ (i · 𝑅) ∈ ℝ))
2221necon4ad 2949 . 2 (𝑅 ∈ ℝ → ((i · 𝑅) ∈ ℝ → 𝑅 = 0))
23 oveq2 7432 . . 3 (𝑅 = 0 → (i · 𝑅) = (i · 0))
24 sn-it0e0 42195 . . . 4 (i · 0) = 0
25 0re 11266 . . . 4 0 ∈ ℝ
2624, 25eqeltri 2822 . . 3 (i · 0) ∈ ℝ
2723, 26eqeltrdi 2834 . 2 (𝑅 = 0 → (i · 𝑅) ∈ ℝ)
2822, 27impbid1 224 1 (𝑅 ∈ ℝ → ((i · 𝑅) ∈ ℝ ↔ 𝑅 = 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wne 2930  (class class class)co 7424  cc 11156  cr 11157  0cc0 11158  1c1 11159  ici 11160   · cmul 11163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-po 5594  df-so 5595  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-pnf 11300  df-mnf 11301  df-ltxr 11303  df-2 12327  df-3 12328  df-resub 42146
This theorem is referenced by:  cnreeu  42250
  Copyright terms: Public domain W3C validator