HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhssvs Structured version   Visualization version   GIF version

Theorem hhssvs 30780
Description: The vector subtraction operation on a subspace. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhsssh2.1 π‘Š = ⟨⟨( +β„Ž β†Ύ (𝐻 Γ— 𝐻)), ( Β·β„Ž β†Ύ (β„‚ Γ— 𝐻))⟩, (normβ„Ž β†Ύ 𝐻)⟩
hhssba.2 𝐻 ∈ Sβ„‹
Assertion
Ref Expression
hhssvs ( βˆ’β„Ž β†Ύ (𝐻 Γ— 𝐻)) = ( βˆ’π‘£ β€˜π‘Š)

Proof of Theorem hhssvs
StepHypRef Expression
1 eqid 2732 . . . 4 ⟨⟨ +β„Ž , Β·β„Ž ⟩, normβ„ŽβŸ© = ⟨⟨ +β„Ž , Β·β„Ž ⟩, normβ„ŽβŸ©
21hhnv 30673 . . 3 ⟨⟨ +β„Ž , Β·β„Ž ⟩, normβ„ŽβŸ© ∈ NrmCVec
3 hhssba.2 . . . 4 𝐻 ∈ Sβ„‹
4 hhsssh2.1 . . . . 5 π‘Š = ⟨⟨( +β„Ž β†Ύ (𝐻 Γ— 𝐻)), ( Β·β„Ž β†Ύ (β„‚ Γ— 𝐻))⟩, (normβ„Ž β†Ύ 𝐻)⟩
51, 4hhsst 30774 . . . 4 (𝐻 ∈ Sβ„‹ β†’ π‘Š ∈ (SubSpβ€˜βŸ¨βŸ¨ +β„Ž , Β·β„Ž ⟩, normβ„ŽβŸ©))
63, 5ax-mp 5 . . 3 π‘Š ∈ (SubSpβ€˜βŸ¨βŸ¨ +β„Ž , Β·β„Ž ⟩, normβ„ŽβŸ©)
74, 3hhssba 30779 . . . 4 𝐻 = (BaseSetβ€˜π‘Š)
81hhvs 30678 . . . 4 βˆ’β„Ž = ( βˆ’π‘£ β€˜βŸ¨βŸ¨ +β„Ž , Β·β„Ž ⟩, normβ„ŽβŸ©)
9 eqid 2732 . . . 4 ( βˆ’π‘£ β€˜π‘Š) = ( βˆ’π‘£ β€˜π‘Š)
10 eqid 2732 . . . 4 (SubSpβ€˜βŸ¨βŸ¨ +β„Ž , Β·β„Ž ⟩, normβ„ŽβŸ©) = (SubSpβ€˜βŸ¨βŸ¨ +β„Ž , Β·β„Ž ⟩, normβ„ŽβŸ©)
117, 8, 9, 10sspm 30242 . . 3 ((⟨⟨ +β„Ž , Β·β„Ž ⟩, normβ„ŽβŸ© ∈ NrmCVec ∧ π‘Š ∈ (SubSpβ€˜βŸ¨βŸ¨ +β„Ž , Β·β„Ž ⟩, normβ„ŽβŸ©)) β†’ ( βˆ’π‘£ β€˜π‘Š) = ( βˆ’β„Ž β†Ύ (𝐻 Γ— 𝐻)))
122, 6, 11mp2an 690 . 2 ( βˆ’π‘£ β€˜π‘Š) = ( βˆ’β„Ž β†Ύ (𝐻 Γ— 𝐻))
1312eqcomi 2741 1 ( βˆ’β„Ž β†Ύ (𝐻 Γ— 𝐻)) = ( βˆ’π‘£ β€˜π‘Š)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541   ∈ wcel 2106  βŸ¨cop 4634   Γ— cxp 5674   β†Ύ cres 5678  β€˜cfv 6543  β„‚cc 11110  NrmCVeccnv 30092   βˆ’π‘£ cnsb 30097  SubSpcss 30229   +β„Ž cva 30428   Β·β„Ž csm 30429  normβ„Žcno 30431   βˆ’β„Ž cmv 30433   Sβ„‹ csh 30436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190  ax-addf 11191  ax-mulf 11192  ax-hilex 30507  ax-hfvadd 30508  ax-hvcom 30509  ax-hvass 30510  ax-hv0cl 30511  ax-hvaddid 30512  ax-hfvmul 30513  ax-hvmulid 30514  ax-hvmulass 30515  ax-hvdistr1 30516  ax-hvdistr2 30517  ax-hvmul0 30518  ax-hfi 30587  ax-his1 30590  ax-his2 30591  ax-his3 30592  ax-his4 30593
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-map 8824  df-pm 8825  df-en 8942  df-dom 8943  df-sdom 8944  df-sup 9439  df-inf 9440  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-n0 12477  df-z 12563  df-uz 12827  df-q 12937  df-rp 12979  df-xneg 13096  df-xadd 13097  df-xmul 13098  df-icc 13335  df-seq 13971  df-exp 14032  df-cj 15050  df-re 15051  df-im 15052  df-sqrt 15186  df-abs 15187  df-topgen 17393  df-psmet 21136  df-xmet 21137  df-met 21138  df-bl 21139  df-mopn 21140  df-top 22616  df-topon 22633  df-bases 22669  df-lm 22953  df-haus 23039  df-grpo 30001  df-gid 30002  df-ginv 30003  df-gdiv 30004  df-ablo 30053  df-vc 30067  df-nv 30100  df-va 30103  df-ba 30104  df-sm 30105  df-0v 30106  df-vs 30107  df-nmcv 30108  df-ims 30109  df-ssp 30230  df-hnorm 30476  df-hba 30477  df-hvsub 30479  df-hlim 30480  df-sh 30715  df-ch 30729  df-ch0 30761
This theorem is referenced by:  hhssvsf  30781  hhssims  30782  hhssmetdval  30785
  Copyright terms: Public domain W3C validator