![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hhssvs | Structured version Visualization version GIF version |
Description: The vector subtraction operation on a subspace. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hhsssh2.1 | β’ π = β¨β¨( +β βΎ (π» Γ π»)), ( Β·β βΎ (β Γ π»))β©, (normβ βΎ π»)β© |
hhssba.2 | β’ π» β Sβ |
Ref | Expression |
---|---|
hhssvs | β’ ( ββ βΎ (π» Γ π»)) = ( βπ£ βπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . 4 β’ β¨β¨ +β , Β·β β©, normββ© = β¨β¨ +β , Β·β β©, normββ© | |
2 | 1 | hhnv 30673 | . . 3 β’ β¨β¨ +β , Β·β β©, normββ© β NrmCVec |
3 | hhssba.2 | . . . 4 β’ π» β Sβ | |
4 | hhsssh2.1 | . . . . 5 β’ π = β¨β¨( +β βΎ (π» Γ π»)), ( Β·β βΎ (β Γ π»))β©, (normβ βΎ π»)β© | |
5 | 1, 4 | hhsst 30774 | . . . 4 β’ (π» β Sβ β π β (SubSpββ¨β¨ +β , Β·β β©, normββ©)) |
6 | 3, 5 | ax-mp 5 | . . 3 β’ π β (SubSpββ¨β¨ +β , Β·β β©, normββ©) |
7 | 4, 3 | hhssba 30779 | . . . 4 β’ π» = (BaseSetβπ) |
8 | 1 | hhvs 30678 | . . . 4 β’ ββ = ( βπ£ ββ¨β¨ +β , Β·β β©, normββ©) |
9 | eqid 2732 | . . . 4 β’ ( βπ£ βπ) = ( βπ£ βπ) | |
10 | eqid 2732 | . . . 4 β’ (SubSpββ¨β¨ +β , Β·β β©, normββ©) = (SubSpββ¨β¨ +β , Β·β β©, normββ©) | |
11 | 7, 8, 9, 10 | sspm 30242 | . . 3 β’ ((β¨β¨ +β , Β·β β©, normββ© β NrmCVec β§ π β (SubSpββ¨β¨ +β , Β·β β©, normββ©)) β ( βπ£ βπ) = ( ββ βΎ (π» Γ π»))) |
12 | 2, 6, 11 | mp2an 690 | . 2 β’ ( βπ£ βπ) = ( ββ βΎ (π» Γ π»)) |
13 | 12 | eqcomi 2741 | 1 β’ ( ββ βΎ (π» Γ π»)) = ( βπ£ βπ) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 β wcel 2106 β¨cop 4634 Γ cxp 5674 βΎ cres 5678 βcfv 6543 βcc 11110 NrmCVeccnv 30092 βπ£ cnsb 30097 SubSpcss 30229 +β cva 30428 Β·β csm 30429 normβcno 30431 ββ cmv 30433 Sβ csh 30436 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 ax-addf 11191 ax-mulf 11192 ax-hilex 30507 ax-hfvadd 30508 ax-hvcom 30509 ax-hvass 30510 ax-hv0cl 30511 ax-hvaddid 30512 ax-hfvmul 30513 ax-hvmulid 30514 ax-hvmulass 30515 ax-hvdistr1 30516 ax-hvdistr2 30517 ax-hvmul0 30518 ax-hfi 30587 ax-his1 30590 ax-his2 30591 ax-his3 30592 ax-his4 30593 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-map 8824 df-pm 8825 df-en 8942 df-dom 8943 df-sdom 8944 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-n0 12477 df-z 12563 df-uz 12827 df-q 12937 df-rp 12979 df-xneg 13096 df-xadd 13097 df-xmul 13098 df-icc 13335 df-seq 13971 df-exp 14032 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-topgen 17393 df-psmet 21136 df-xmet 21137 df-met 21138 df-bl 21139 df-mopn 21140 df-top 22616 df-topon 22633 df-bases 22669 df-lm 22953 df-haus 23039 df-grpo 30001 df-gid 30002 df-ginv 30003 df-gdiv 30004 df-ablo 30053 df-vc 30067 df-nv 30100 df-va 30103 df-ba 30104 df-sm 30105 df-0v 30106 df-vs 30107 df-nmcv 30108 df-ims 30109 df-ssp 30230 df-hnorm 30476 df-hba 30477 df-hvsub 30479 df-hlim 30480 df-sh 30715 df-ch 30729 df-ch0 30761 |
This theorem is referenced by: hhssvsf 30781 hhssims 30782 hhssmetdval 30785 |
Copyright terms: Public domain | W3C validator |