| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hhssvs | Structured version Visualization version GIF version | ||
| Description: The vector subtraction operation on a subspace. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hhsssh2.1 | ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 |
| hhssba.2 | ⊢ 𝐻 ∈ Sℋ |
| Ref | Expression |
|---|---|
| hhssvs | ⊢ ( −ℎ ↾ (𝐻 × 𝐻)) = ( −𝑣 ‘𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . . 4 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
| 2 | 1 | hhnv 31149 | . . 3 ⊢ 〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ NrmCVec |
| 3 | hhssba.2 | . . . 4 ⊢ 𝐻 ∈ Sℋ | |
| 4 | hhsssh2.1 | . . . . 5 ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 | |
| 5 | 1, 4 | hhsst 31250 | . . . 4 ⊢ (𝐻 ∈ Sℋ → 𝑊 ∈ (SubSp‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) |
| 6 | 3, 5 | ax-mp 5 | . . 3 ⊢ 𝑊 ∈ (SubSp‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 7 | 4, 3 | hhssba 31255 | . . . 4 ⊢ 𝐻 = (BaseSet‘𝑊) |
| 8 | 1 | hhvs 31154 | . . . 4 ⊢ −ℎ = ( −𝑣 ‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) |
| 9 | eqid 2733 | . . . 4 ⊢ ( −𝑣 ‘𝑊) = ( −𝑣 ‘𝑊) | |
| 10 | eqid 2733 | . . . 4 ⊢ (SubSp‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) = (SubSp‘〈〈 +ℎ , ·ℎ 〉, normℎ〉) | |
| 11 | 7, 8, 9, 10 | sspm 30718 | . . 3 ⊢ ((〈〈 +ℎ , ·ℎ 〉, normℎ〉 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘〈〈 +ℎ , ·ℎ 〉, normℎ〉)) → ( −𝑣 ‘𝑊) = ( −ℎ ↾ (𝐻 × 𝐻))) |
| 12 | 2, 6, 11 | mp2an 692 | . 2 ⊢ ( −𝑣 ‘𝑊) = ( −ℎ ↾ (𝐻 × 𝐻)) |
| 13 | 12 | eqcomi 2742 | 1 ⊢ ( −ℎ ↾ (𝐻 × 𝐻)) = ( −𝑣 ‘𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 〈cop 4583 × cxp 5619 ↾ cres 5623 ‘cfv 6488 ℂcc 11013 NrmCVeccnv 30568 −𝑣 cnsb 30573 SubSpcss 30705 +ℎ cva 30904 ·ℎ csm 30905 normℎcno 30907 −ℎ cmv 30909 Sℋ csh 30912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 ax-addf 11094 ax-mulf 11095 ax-hilex 30983 ax-hfvadd 30984 ax-hvcom 30985 ax-hvass 30986 ax-hv0cl 30987 ax-hvaddid 30988 ax-hfvmul 30989 ax-hvmulid 30990 ax-hvmulass 30991 ax-hvdistr1 30992 ax-hvdistr2 30993 ax-hvmul0 30994 ax-hfi 31063 ax-his1 31066 ax-his2 31067 ax-his3 31068 ax-his4 31069 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-er 8630 df-map 8760 df-pm 8761 df-en 8878 df-dom 8879 df-sdom 8880 df-sup 9335 df-inf 9336 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-n0 12391 df-z 12478 df-uz 12741 df-q 12851 df-rp 12895 df-xneg 13015 df-xadd 13016 df-xmul 13017 df-icc 13256 df-seq 13913 df-exp 13973 df-cj 15010 df-re 15011 df-im 15012 df-sqrt 15146 df-abs 15147 df-topgen 17351 df-psmet 21287 df-xmet 21288 df-met 21289 df-bl 21290 df-mopn 21291 df-top 22812 df-topon 22829 df-bases 22864 df-lm 23147 df-haus 23233 df-grpo 30477 df-gid 30478 df-ginv 30479 df-gdiv 30480 df-ablo 30529 df-vc 30543 df-nv 30576 df-va 30579 df-ba 30580 df-sm 30581 df-0v 30582 df-vs 30583 df-nmcv 30584 df-ims 30585 df-ssp 30706 df-hnorm 30952 df-hba 30953 df-hvsub 30955 df-hlim 30956 df-sh 31191 df-ch 31205 df-ch0 31237 |
| This theorem is referenced by: hhssvsf 31257 hhssims 31258 hhssmetdval 31261 |
| Copyright terms: Public domain | W3C validator |