MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  divsubdir Structured version   Visualization version   GIF version

Theorem divsubdir 11907
Description: Distribution of division over subtraction. (Contributed by NM, 4-Mar-2005.)
Assertion
Ref Expression
divsubdir ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴𝐵) / 𝐶) = ((𝐴 / 𝐶) − (𝐵 / 𝐶)))

Proof of Theorem divsubdir
StepHypRef Expression
1 negcl 11459 . . . 4 (𝐵 ∈ ℂ → -𝐵 ∈ ℂ)
2 divdir 11896 . . . 4 ((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 + -𝐵) / 𝐶) = ((𝐴 / 𝐶) + (-𝐵 / 𝐶)))
31, 2syl3an2 1164 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 + -𝐵) / 𝐶) = ((𝐴 / 𝐶) + (-𝐵 / 𝐶)))
4 negsub 11507 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴𝐵))
54oveq1d 7423 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + -𝐵) / 𝐶) = ((𝐴𝐵) / 𝐶))
653adant3 1132 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 + -𝐵) / 𝐶) = ((𝐴𝐵) / 𝐶))
73, 6eqtr3d 2774 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐶) + (-𝐵 / 𝐶)) = ((𝐴𝐵) / 𝐶))
8 divneg 11905 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → -(𝐵 / 𝐶) = (-𝐵 / 𝐶))
983expb 1120 . . . . 5 ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → -(𝐵 / 𝐶) = (-𝐵 / 𝐶))
1093adant1 1130 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → -(𝐵 / 𝐶) = (-𝐵 / 𝐶))
1110oveq2d 7424 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐶) + -(𝐵 / 𝐶)) = ((𝐴 / 𝐶) + (-𝐵 / 𝐶)))
12 divcl 11877 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐴 / 𝐶) ∈ ℂ)
13123expb 1120 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴 / 𝐶) ∈ ℂ)
14133adant2 1131 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴 / 𝐶) ∈ ℂ)
15 divcl 11877 . . . . . 6 ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐵 / 𝐶) ∈ ℂ)
16153expb 1120 . . . . 5 ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐵 / 𝐶) ∈ ℂ)
17163adant1 1130 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐵 / 𝐶) ∈ ℂ)
1814, 17negsubd 11576 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐶) + -(𝐵 / 𝐶)) = ((𝐴 / 𝐶) − (𝐵 / 𝐶)))
1911, 18eqtr3d 2774 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐶) + (-𝐵 / 𝐶)) = ((𝐴 / 𝐶) − (𝐵 / 𝐶)))
207, 19eqtr3d 2774 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴𝐵) / 𝐶) = ((𝐴 / 𝐶) − (𝐵 / 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2940  (class class class)co 7408  cc 11107  0cc0 11109   + caddc 11112  cmin 11443  -cneg 11444   / cdiv 11870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871
This theorem is referenced by:  subdivcomb1  11908  subdivcomb2  11909  divsubdird  12028  1mhlfehlf  12430  halfpm6th  12432  halfaddsub  12444  zeo  12647  quoremz  13819  quoremnn0ALT  13821  mulsubdivbinom2  14221  facndiv  14247  bpoly3  16001  cos2bnd  16130  rpnnen2lem3  16158  rpnnen2lem11  16166  pythagtriplem15  16761  ovolscalem1  25029  sinq12gt0  26016  sincos6thpi  26024  ang180lem2  26312  log2cnv  26446  log2tlbnd  26447  basellem3  26584  ppiub  26704  logfacrlim  26724  logexprlim  26725  bposlem8  26791  gausslemma2dlem1a  26865  chtppilimlem1  26973  vmadivsum  26982  rplogsumlem2  26985  rpvmasumlem  26987  rplogsum  27027  mulog2sumlem1  27034  selberg2lem  27050  selberg2  27051  selbergr  27068  pntlemr  27102  pntlemj  27103  ballotth  33531  nndivsub  35337  heiborlem6  36679  areaquad  41955  lhe4.4ex1a  43078  stirlinglem10  44789  divsub1dir  47188  line2  47428
  Copyright terms: Public domain W3C validator