![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > divsubdir | Structured version Visualization version GIF version |
Description: Distribution of division over subtraction. (Contributed by NM, 4-Mar-2005.) |
Ref | Expression |
---|---|
divsubdir | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 − 𝐵) / 𝐶) = ((𝐴 / 𝐶) − (𝐵 / 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negcl 11460 | . . . 4 ⊢ (𝐵 ∈ ℂ → -𝐵 ∈ ℂ) | |
2 | divdir 11897 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 + -𝐵) / 𝐶) = ((𝐴 / 𝐶) + (-𝐵 / 𝐶))) | |
3 | 1, 2 | syl3an2 1165 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 + -𝐵) / 𝐶) = ((𝐴 / 𝐶) + (-𝐵 / 𝐶))) |
4 | negsub 11508 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) | |
5 | 4 | oveq1d 7424 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + -𝐵) / 𝐶) = ((𝐴 − 𝐵) / 𝐶)) |
6 | 5 | 3adant3 1133 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 + -𝐵) / 𝐶) = ((𝐴 − 𝐵) / 𝐶)) |
7 | 3, 6 | eqtr3d 2775 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐶) + (-𝐵 / 𝐶)) = ((𝐴 − 𝐵) / 𝐶)) |
8 | divneg 11906 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → -(𝐵 / 𝐶) = (-𝐵 / 𝐶)) | |
9 | 8 | 3expb 1121 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → -(𝐵 / 𝐶) = (-𝐵 / 𝐶)) |
10 | 9 | 3adant1 1131 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → -(𝐵 / 𝐶) = (-𝐵 / 𝐶)) |
11 | 10 | oveq2d 7425 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐶) + -(𝐵 / 𝐶)) = ((𝐴 / 𝐶) + (-𝐵 / 𝐶))) |
12 | divcl 11878 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐴 / 𝐶) ∈ ℂ) | |
13 | 12 | 3expb 1121 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴 / 𝐶) ∈ ℂ) |
14 | 13 | 3adant2 1132 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐴 / 𝐶) ∈ ℂ) |
15 | divcl 11878 | . . . . . 6 ⊢ ((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) → (𝐵 / 𝐶) ∈ ℂ) | |
16 | 15 | 3expb 1121 | . . . . 5 ⊢ ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐵 / 𝐶) ∈ ℂ) |
17 | 16 | 3adant1 1131 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → (𝐵 / 𝐶) ∈ ℂ) |
18 | 14, 17 | negsubd 11577 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐶) + -(𝐵 / 𝐶)) = ((𝐴 / 𝐶) − (𝐵 / 𝐶))) |
19 | 11, 18 | eqtr3d 2775 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 / 𝐶) + (-𝐵 / 𝐶)) = ((𝐴 / 𝐶) − (𝐵 / 𝐶))) |
20 | 7, 19 | eqtr3d 2775 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0)) → ((𝐴 − 𝐵) / 𝐶) = ((𝐴 / 𝐶) − (𝐵 / 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 (class class class)co 7409 ℂcc 11108 0cc0 11110 + caddc 11113 − cmin 11444 -cneg 11445 / cdiv 11871 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 |
This theorem is referenced by: subdivcomb1 11909 subdivcomb2 11910 divsubdird 12029 1mhlfehlf 12431 halfpm6th 12433 halfaddsub 12445 zeo 12648 quoremz 13820 quoremnn0ALT 13822 mulsubdivbinom2 14222 facndiv 14248 bpoly3 16002 cos2bnd 16131 rpnnen2lem3 16159 rpnnen2lem11 16167 pythagtriplem15 16762 ovolscalem1 25030 sinq12gt0 26017 sincos6thpi 26025 ang180lem2 26315 log2cnv 26449 log2tlbnd 26450 basellem3 26587 ppiub 26707 logfacrlim 26727 logexprlim 26728 bposlem8 26794 gausslemma2dlem1a 26868 chtppilimlem1 26976 vmadivsum 26985 rplogsumlem2 26988 rpvmasumlem 26990 rplogsum 27030 mulog2sumlem1 27037 selberg2lem 27053 selberg2 27054 selbergr 27071 pntlemr 27105 pntlemj 27106 ballotth 33536 nndivsub 35342 heiborlem6 36684 areaquad 41965 lhe4.4ex1a 43088 stirlinglem10 44799 divsub1dir 47198 line2 47438 |
Copyright terms: Public domain | W3C validator |