MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suprcld Structured version   Visualization version   GIF version

Theorem suprcld 11640
Description: Natural deduction form of suprcl 11637. (Contributed by Stanislas Polu, 9-Mar-2020.)
Hypotheses
Ref Expression
suprcld.2 (𝜑𝐴 ⊆ ℝ)
suprcld.1 (𝜑𝐴 ≠ ∅)
suprcld.4 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
Assertion
Ref Expression
suprcld (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ)
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem suprcld
StepHypRef Expression
1 suprcld.2 . 2 (𝜑𝐴 ⊆ ℝ)
2 suprcld.1 . 2 (𝜑𝐴 ≠ ∅)
3 suprcld.4 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥)
4 suprcl 11637 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦𝑥) → sup(𝐴, ℝ, < ) ∈ ℝ)
51, 2, 3, 4syl3anc 1368 1 (𝜑 → sup(𝐴, ℝ, < ) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  wne 2951  wral 3070  wrex 3071  wss 3858  c0 4225   class class class wbr 5032  supcsup 8937  cr 10574   < clt 10713  cle 10714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652  ax-pre-sup 10653
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-po 5443  df-so 5444  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-er 8299  df-en 8528  df-dom 8529  df-sdom 8530  df-sup 8939  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911
This theorem is referenced by:  supaddc  11644  supadd  11645  flval3  13234  supcvg  15259  ruclem12  15642  prmreclem6  16312  icccmplem2  23524  icccmplem3  23525  reconnlem2  23528  ivthlem2  24152  ivthlem3  24153  ioombl1lem4  24261  mbfsup  24364  mbflimsup  24366  itg2monolem1  24450  itg2mono  24453  itg2cnlem1  24461  c1liplem1  24695  imo72b2lem0  41242  imo72b2  41251  suprclrnmpt  42257
  Copyright terms: Public domain W3C validator