Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendoipl2 Structured version   Visualization version   GIF version

Theorem tendoipl2 40785
Description: Property of the additive inverse endomorphism. (Contributed by NM, 29-Sep-2014.)
Hypotheses
Ref Expression
tendoicl.h 𝐻 = (LHyp‘𝐾)
tendoicl.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendoicl.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendoicl.i 𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))
tendoi.b 𝐵 = (Base‘𝐾)
tendoi.p 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
tendoi.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
tendoipl2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝑆𝑃(𝐼𝑆)) = 𝑂)
Distinct variable groups:   𝐸,𝑠   𝑓,𝑠,𝑇   𝑓,𝑊,𝑠   𝐵,𝑓   𝑡,𝐸   𝑓,𝐻   𝑓,𝐾   𝑡,𝑓,𝑠,𝑇   𝑡,𝑊
Allowed substitution hints:   𝐵(𝑡,𝑠)   𝑃(𝑡,𝑓,𝑠)   𝑆(𝑡,𝑓,𝑠)   𝐸(𝑓)   𝐻(𝑡,𝑠)   𝐼(𝑡,𝑓,𝑠)   𝐾(𝑡,𝑠)   𝑂(𝑡,𝑓,𝑠)

Proof of Theorem tendoipl2
StepHypRef Expression
1 tendoicl.h . . . 4 𝐻 = (LHyp‘𝐾)
2 tendoicl.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 tendoicl.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
4 tendoicl.i . . . 4 𝐼 = (𝑠𝐸 ↦ (𝑓𝑇(𝑠𝑓)))
51, 2, 3, 4tendoicl 40783 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝐼𝑆) ∈ 𝐸)
6 tendoi.p . . . 4 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
71, 2, 3, 6tendoplcom 40769 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸 ∧ (𝐼𝑆) ∈ 𝐸) → (𝑆𝑃(𝐼𝑆)) = ((𝐼𝑆)𝑃𝑆))
85, 7mpd3an3 1464 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝑆𝑃(𝐼𝑆)) = ((𝐼𝑆)𝑃𝑆))
9 tendoi.b . . 3 𝐵 = (Base‘𝐾)
10 tendoi.o . . 3 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
111, 2, 3, 4, 9, 6, 10tendoipl 40784 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → ((𝐼𝑆)𝑃𝑆) = 𝑂)
128, 11eqtrd 2764 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸) → (𝑆𝑃(𝐼𝑆)) = 𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cmpt 5183   I cid 5525  ccnv 5630  cres 5633  ccom 5635  cfv 6499  (class class class)co 7369  cmpo 7371  Basecbs 17155  HLchlt 39336  LHypclh 39971  LTrncltrn 40088  TEndoctendo 40739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-riotaBAD 38939
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-undef 8229  df-map 8778  df-proset 18235  df-poset 18254  df-plt 18269  df-lub 18285  df-glb 18286  df-join 18287  df-meet 18288  df-p0 18364  df-p1 18365  df-lat 18373  df-clat 18440  df-oposet 39162  df-ol 39164  df-oml 39165  df-covers 39252  df-ats 39253  df-atl 39284  df-cvlat 39308  df-hlat 39337  df-llines 39485  df-lplanes 39486  df-lvols 39487  df-lines 39488  df-psubsp 39490  df-pmap 39491  df-padd 39783  df-lhyp 39975  df-laut 39976  df-ldil 40091  df-ltrn 40092  df-trl 40146  df-tendo 40742
This theorem is referenced by:  dihjatcclem4  41408
  Copyright terms: Public domain W3C validator