Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ubelsupr Structured version   Visualization version   GIF version

Theorem ubelsupr 43475
Description: If U belongs to A and U is an upper bound, then U is the sup of A. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Assertion
Ref Expression
ubelsupr ((𝐴 ⊆ ℝ ∧ 𝑈𝐴 ∧ ∀𝑥𝐴 𝑥𝑈) → 𝑈 = sup(𝐴, ℝ, < ))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑈

Proof of Theorem ubelsupr
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝑈𝐴 ∧ ∀𝑥𝐴 𝑥𝑈) → 𝐴 ⊆ ℝ)
2 simp2 1137 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝑈𝐴 ∧ ∀𝑥𝐴 𝑥𝑈) → 𝑈𝐴)
32ne0d 4331 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝑈𝐴 ∧ ∀𝑥𝐴 𝑥𝑈) → 𝐴 ≠ ∅)
41, 2sseldd 3979 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝑈𝐴 ∧ ∀𝑥𝐴 𝑥𝑈) → 𝑈 ∈ ℝ)
5 simp3 1138 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝑈𝐴 ∧ ∀𝑥𝐴 𝑥𝑈) → ∀𝑥𝐴 𝑥𝑈)
6 brralrspcev 5201 . . . . 5 ((𝑈 ∈ ℝ ∧ ∀𝑥𝐴 𝑥𝑈) → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦)
74, 5, 6syl2anc 584 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝑈𝐴 ∧ ∀𝑥𝐴 𝑥𝑈) → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦)
81, 3, 73jca 1128 . . 3 ((𝐴 ⊆ ℝ ∧ 𝑈𝐴 ∧ ∀𝑥𝐴 𝑥𝑈) → (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦))
9 suprub 12157 . . 3 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦) ∧ 𝑈𝐴) → 𝑈 ≤ sup(𝐴, ℝ, < ))
108, 2, 9syl2anc 584 . 2 ((𝐴 ⊆ ℝ ∧ 𝑈𝐴 ∧ ∀𝑥𝐴 𝑥𝑈) → 𝑈 ≤ sup(𝐴, ℝ, < ))
11 suprleub 12162 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦) ∧ 𝑈 ∈ ℝ) → (sup(𝐴, ℝ, < ) ≤ 𝑈 ↔ ∀𝑥𝐴 𝑥𝑈))
128, 4, 11syl2anc 584 . . 3 ((𝐴 ⊆ ℝ ∧ 𝑈𝐴 ∧ ∀𝑥𝐴 𝑥𝑈) → (sup(𝐴, ℝ, < ) ≤ 𝑈 ↔ ∀𝑥𝐴 𝑥𝑈))
135, 12mpbird 256 . 2 ((𝐴 ⊆ ℝ ∧ 𝑈𝐴 ∧ ∀𝑥𝐴 𝑥𝑈) → sup(𝐴, ℝ, < ) ≤ 𝑈)
14 suprcl 12156 . . . 4 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝑥𝑦) → sup(𝐴, ℝ, < ) ∈ ℝ)
158, 14syl 17 . . 3 ((𝐴 ⊆ ℝ ∧ 𝑈𝐴 ∧ ∀𝑥𝐴 𝑥𝑈) → sup(𝐴, ℝ, < ) ∈ ℝ)
164, 15letri3d 11338 . 2 ((𝐴 ⊆ ℝ ∧ 𝑈𝐴 ∧ ∀𝑥𝐴 𝑥𝑈) → (𝑈 = sup(𝐴, ℝ, < ) ↔ (𝑈 ≤ sup(𝐴, ℝ, < ) ∧ sup(𝐴, ℝ, < ) ≤ 𝑈)))
1710, 13, 16mpbir2and 711 1 ((𝐴 ⊆ ℝ ∧ 𝑈𝐴 ∧ ∀𝑥𝐴 𝑥𝑈) → 𝑈 = sup(𝐴, ℝ, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1087   = wceq 1541  wcel 2106  wne 2939  wral 3060  wrex 3069  wss 3944  c0 4318   class class class wbr 5141  supcsup 9417  cr 11091   < clt 11230  cle 11231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-pre-sup 11170
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-er 8686  df-en 8923  df-dom 8924  df-sdom 8925  df-sup 9419  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429
This theorem is referenced by:  cncmpmax  43487
  Copyright terms: Public domain W3C validator