Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ubelsupr | Structured version Visualization version GIF version |
Description: If U belongs to A and U is an upper bound, then U is the sup of A. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
ubelsupr | ⊢ ((𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑈) → 𝑈 = sup(𝐴, ℝ, < )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1138 | . . . 4 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑈) → 𝐴 ⊆ ℝ) | |
2 | simp2 1139 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑈) → 𝑈 ∈ 𝐴) | |
3 | 2 | ne0d 4250 | . . . 4 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑈) → 𝐴 ≠ ∅) |
4 | 1, 2 | sseldd 3902 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑈) → 𝑈 ∈ ℝ) |
5 | simp3 1140 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑈) → ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑈) | |
6 | brralrspcev 5113 | . . . . 5 ⊢ ((𝑈 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑈) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑦) | |
7 | 4, 5, 6 | syl2anc 587 | . . . 4 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑈) → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑦) |
8 | 1, 3, 7 | 3jca 1130 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑈) → (𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑦)) |
9 | suprub 11793 | . . 3 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝑈 ∈ 𝐴) → 𝑈 ≤ sup(𝐴, ℝ, < )) | |
10 | 8, 2, 9 | syl2anc 587 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑈) → 𝑈 ≤ sup(𝐴, ℝ, < )) |
11 | suprleub 11798 | . . . 4 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝑈 ∈ ℝ) → (sup(𝐴, ℝ, < ) ≤ 𝑈 ↔ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑈)) | |
12 | 8, 4, 11 | syl2anc 587 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑈) → (sup(𝐴, ℝ, < ) ≤ 𝑈 ↔ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑈)) |
13 | 5, 12 | mpbird 260 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑈) → sup(𝐴, ℝ, < ) ≤ 𝑈) |
14 | suprcl 11792 | . . . 4 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑦) → sup(𝐴, ℝ, < ) ∈ ℝ) | |
15 | 8, 14 | syl 17 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑈) → sup(𝐴, ℝ, < ) ∈ ℝ) |
16 | 4, 15 | letri3d 10974 | . 2 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑈) → (𝑈 = sup(𝐴, ℝ, < ) ↔ (𝑈 ≤ sup(𝐴, ℝ, < ) ∧ sup(𝐴, ℝ, < ) ≤ 𝑈))) |
17 | 10, 13, 16 | mpbir2and 713 | 1 ⊢ ((𝐴 ⊆ ℝ ∧ 𝑈 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ 𝑈) → 𝑈 = sup(𝐴, ℝ, < )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 ∀wral 3061 ∃wrex 3062 ⊆ wss 3866 ∅c0 4237 class class class wbr 5053 supcsup 9056 ℝcr 10728 < clt 10867 ≤ cle 10868 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-po 5468 df-so 5469 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-sup 9058 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 |
This theorem is referenced by: cncmpmax 42248 |
Copyright terms: Public domain | W3C validator |