Step | Hyp | Ref
| Expression |
1 | | cncmpmax.1 |
. . 3
β’ π = βͺ
π½ |
2 | | cncmpmax.2 |
. . 3
β’ πΎ = (topGenβran
(,)) |
3 | | cncmpmax.3 |
. . 3
β’ (π β π½ β Comp) |
4 | | cncmpmax.4 |
. . 3
β’ (π β πΉ β (π½ Cn πΎ)) |
5 | | cncmpmax.5 |
. . 3
β’ (π β π β β
) |
6 | 1, 2, 3, 4, 5 | evth 24699 |
. 2
β’ (π β βπ₯ β π βπ‘ β π (πΉβπ‘) β€ (πΉβπ₯)) |
7 | | eqid 2732 |
. . . . . . . . 9
β’ (π½ Cn πΎ) = (π½ Cn πΎ) |
8 | 2, 1, 7, 4 | fcnre 44011 |
. . . . . . . 8
β’ (π β πΉ:πβΆβ) |
9 | 8 | frnd 6725 |
. . . . . . 7
β’ (π β ran πΉ β β) |
10 | 9 | adantr 481 |
. . . . . 6
β’ ((π β§ (π₯ β π β§ βπ‘ β π (πΉβπ‘) β€ (πΉβπ₯))) β ran πΉ β β) |
11 | 8 | ffund 6721 |
. . . . . . . . 9
β’ (π β Fun πΉ) |
12 | 11 | adantr 481 |
. . . . . . . 8
β’ ((π β§ π₯ β π) β Fun πΉ) |
13 | | simpr 485 |
. . . . . . . . 9
β’ ((π β§ π₯ β π) β π₯ β π) |
14 | 8 | adantr 481 |
. . . . . . . . . 10
β’ ((π β§ π₯ β π) β πΉ:πβΆβ) |
15 | 14 | fdmd 6728 |
. . . . . . . . 9
β’ ((π β§ π₯ β π) β dom πΉ = π) |
16 | 13, 15 | eleqtrrd 2836 |
. . . . . . . 8
β’ ((π β§ π₯ β π) β π₯ β dom πΉ) |
17 | | fvelrn 7078 |
. . . . . . . 8
β’ ((Fun
πΉ β§ π₯ β dom πΉ) β (πΉβπ₯) β ran πΉ) |
18 | 12, 16, 17 | syl2anc 584 |
. . . . . . 7
β’ ((π β§ π₯ β π) β (πΉβπ₯) β ran πΉ) |
19 | 18 | adantrr 715 |
. . . . . 6
β’ ((π β§ (π₯ β π β§ βπ‘ β π (πΉβπ‘) β€ (πΉβπ₯))) β (πΉβπ₯) β ran πΉ) |
20 | | ffn 6717 |
. . . . . . . . . . . . 13
β’ (πΉ:πβΆβ β πΉ Fn π) |
21 | | fvelrnb 6952 |
. . . . . . . . . . . . 13
β’ (πΉ Fn π β (π¦ β ran πΉ β βπ β π (πΉβπ ) = π¦)) |
22 | 8, 20, 21 | 3syl 18 |
. . . . . . . . . . . 12
β’ (π β (π¦ β ran πΉ β βπ β π (πΉβπ ) = π¦)) |
23 | 22 | biimpa 477 |
. . . . . . . . . . 11
β’ ((π β§ π¦ β ran πΉ) β βπ β π (πΉβπ ) = π¦) |
24 | | df-rex 3071 |
. . . . . . . . . . 11
β’
(βπ β
π (πΉβπ ) = π¦ β βπ (π β π β§ (πΉβπ ) = π¦)) |
25 | 23, 24 | sylib 217 |
. . . . . . . . . 10
β’ ((π β§ π¦ β ran πΉ) β βπ (π β π β§ (πΉβπ ) = π¦)) |
26 | 25 | adantlr 713 |
. . . . . . . . 9
β’ (((π β§ βπ‘ β π (πΉβπ‘) β€ (πΉβπ₯)) β§ π¦ β ran πΉ) β βπ (π β π β§ (πΉβπ ) = π¦)) |
27 | | simprr 771 |
. . . . . . . . . 10
β’ ((((π β§ βπ‘ β π (πΉβπ‘) β€ (πΉβπ₯)) β§ π¦ β ran πΉ) β§ (π β π β§ (πΉβπ ) = π¦)) β (πΉβπ ) = π¦) |
28 | | simpllr 774 |
. . . . . . . . . . 11
β’ ((((π β§ βπ‘ β π (πΉβπ‘) β€ (πΉβπ₯)) β§ π¦ β ran πΉ) β§ (π β π β§ (πΉβπ ) = π¦)) β βπ‘ β π (πΉβπ‘) β€ (πΉβπ₯)) |
29 | | simprl 769 |
. . . . . . . . . . 11
β’ ((((π β§ βπ‘ β π (πΉβπ‘) β€ (πΉβπ₯)) β§ π¦ β ran πΉ) β§ (π β π β§ (πΉβπ ) = π¦)) β π β π) |
30 | | fveq2 6891 |
. . . . . . . . . . . . 13
β’ (π‘ = π β (πΉβπ‘) = (πΉβπ )) |
31 | 30 | breq1d 5158 |
. . . . . . . . . . . 12
β’ (π‘ = π β ((πΉβπ‘) β€ (πΉβπ₯) β (πΉβπ ) β€ (πΉβπ₯))) |
32 | 31 | rspccva 3611 |
. . . . . . . . . . 11
β’
((βπ‘ β
π (πΉβπ‘) β€ (πΉβπ₯) β§ π β π) β (πΉβπ ) β€ (πΉβπ₯)) |
33 | 28, 29, 32 | syl2anc 584 |
. . . . . . . . . 10
β’ ((((π β§ βπ‘ β π (πΉβπ‘) β€ (πΉβπ₯)) β§ π¦ β ran πΉ) β§ (π β π β§ (πΉβπ ) = π¦)) β (πΉβπ ) β€ (πΉβπ₯)) |
34 | 27, 33 | eqbrtrrd 5172 |
. . . . . . . . 9
β’ ((((π β§ βπ‘ β π (πΉβπ‘) β€ (πΉβπ₯)) β§ π¦ β ran πΉ) β§ (π β π β§ (πΉβπ ) = π¦)) β π¦ β€ (πΉβπ₯)) |
35 | 26, 34 | exlimddv 1938 |
. . . . . . . 8
β’ (((π β§ βπ‘ β π (πΉβπ‘) β€ (πΉβπ₯)) β§ π¦ β ran πΉ) β π¦ β€ (πΉβπ₯)) |
36 | 35 | ralrimiva 3146 |
. . . . . . 7
β’ ((π β§ βπ‘ β π (πΉβπ‘) β€ (πΉβπ₯)) β βπ¦ β ran πΉ π¦ β€ (πΉβπ₯)) |
37 | 36 | adantrl 714 |
. . . . . 6
β’ ((π β§ (π₯ β π β§ βπ‘ β π (πΉβπ‘) β€ (πΉβπ₯))) β βπ¦ β ran πΉ π¦ β€ (πΉβπ₯)) |
38 | | ubelsupr 44006 |
. . . . . 6
β’ ((ran
πΉ β β β§
(πΉβπ₯) β ran πΉ β§ βπ¦ β ran πΉ π¦ β€ (πΉβπ₯)) β (πΉβπ₯) = sup(ran πΉ, β, < )) |
39 | 10, 19, 37, 38 | syl3anc 1371 |
. . . . 5
β’ ((π β§ (π₯ β π β§ βπ‘ β π (πΉβπ‘) β€ (πΉβπ₯))) β (πΉβπ₯) = sup(ran πΉ, β, < )) |
40 | 39 | eqcomd 2738 |
. . . 4
β’ ((π β§ (π₯ β π β§ βπ‘ β π (πΉβπ‘) β€ (πΉβπ₯))) β sup(ran πΉ, β, < ) = (πΉβπ₯)) |
41 | 40, 19 | eqeltrd 2833 |
. . 3
β’ ((π β§ (π₯ β π β§ βπ‘ β π (πΉβπ‘) β€ (πΉβπ₯))) β sup(ran πΉ, β, < ) β ran πΉ) |
42 | 10, 41 | sseldd 3983 |
. . 3
β’ ((π β§ (π₯ β π β§ βπ‘ β π (πΉβπ‘) β€ (πΉβπ₯))) β sup(ran πΉ, β, < ) β
β) |
43 | | simplrr 776 |
. . . . . . 7
β’ (((π β§ (π₯ β π β§ βπ‘ β π (πΉβπ‘) β€ (πΉβπ₯))) β§ π β π) β βπ‘ β π (πΉβπ‘) β€ (πΉβπ₯)) |
44 | 43, 32 | sylancom 588 |
. . . . . 6
β’ (((π β§ (π₯ β π β§ βπ‘ β π (πΉβπ‘) β€ (πΉβπ₯))) β§ π β π) β (πΉβπ ) β€ (πΉβπ₯)) |
45 | 40 | adantr 481 |
. . . . . 6
β’ (((π β§ (π₯ β π β§ βπ‘ β π (πΉβπ‘) β€ (πΉβπ₯))) β§ π β π) β sup(ran πΉ, β, < ) = (πΉβπ₯)) |
46 | 44, 45 | breqtrrd 5176 |
. . . . 5
β’ (((π β§ (π₯ β π β§ βπ‘ β π (πΉβπ‘) β€ (πΉβπ₯))) β§ π β π) β (πΉβπ ) β€ sup(ran πΉ, β, < )) |
47 | 46 | ralrimiva 3146 |
. . . 4
β’ ((π β§ (π₯ β π β§ βπ‘ β π (πΉβπ‘) β€ (πΉβπ₯))) β βπ β π (πΉβπ ) β€ sup(ran πΉ, β, < )) |
48 | 30 | breq1d 5158 |
. . . . 5
β’ (π‘ = π β ((πΉβπ‘) β€ sup(ran πΉ, β, < ) β (πΉβπ ) β€ sup(ran πΉ, β, < ))) |
49 | 48 | cbvralvw 3234 |
. . . 4
β’
(βπ‘ β
π (πΉβπ‘) β€ sup(ran πΉ, β, < ) β βπ β π (πΉβπ ) β€ sup(ran πΉ, β, < )) |
50 | 47, 49 | sylibr 233 |
. . 3
β’ ((π β§ (π₯ β π β§ βπ‘ β π (πΉβπ‘) β€ (πΉβπ₯))) β βπ‘ β π (πΉβπ‘) β€ sup(ran πΉ, β, < )) |
51 | 41, 42, 50 | 3jca 1128 |
. 2
β’ ((π β§ (π₯ β π β§ βπ‘ β π (πΉβπ‘) β€ (πΉβπ₯))) β (sup(ran πΉ, β, < ) β ran πΉ β§ sup(ran πΉ, β, < ) β β β§
βπ‘ β π (πΉβπ‘) β€ sup(ran πΉ, β, < ))) |
52 | 6, 51 | rexlimddv 3161 |
1
β’ (π β (sup(ran πΉ, β, < ) β ran πΉ β§ sup(ran πΉ, β, < ) β β β§
βπ‘ β π (πΉβπ‘) β€ sup(ran πΉ, β, < ))) |