| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cncmpmax | Structured version Visualization version GIF version | ||
| Description: When the hypothesis for the extreme value theorem hold, then the sup of the range of the function belongs to the range, it is real and it an upper bound of the range. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| Ref | Expression |
|---|---|
| cncmpmax.1 | ⊢ 𝑇 = ∪ 𝐽 |
| cncmpmax.2 | ⊢ 𝐾 = (topGen‘ran (,)) |
| cncmpmax.3 | ⊢ (𝜑 → 𝐽 ∈ Comp) |
| cncmpmax.4 | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| cncmpmax.5 | ⊢ (𝜑 → 𝑇 ≠ ∅) |
| Ref | Expression |
|---|---|
| cncmpmax | ⊢ (𝜑 → (sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ∧ sup(ran 𝐹, ℝ, < ) ∈ ℝ ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ sup(ran 𝐹, ℝ, < ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncmpmax.1 | . . 3 ⊢ 𝑇 = ∪ 𝐽 | |
| 2 | cncmpmax.2 | . . 3 ⊢ 𝐾 = (topGen‘ran (,)) | |
| 3 | cncmpmax.3 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Comp) | |
| 4 | cncmpmax.4 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
| 5 | cncmpmax.5 | . . 3 ⊢ (𝜑 → 𝑇 ≠ ∅) | |
| 6 | 1, 2, 3, 4, 5 | evth 24864 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑇 ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥)) |
| 7 | eqid 2730 | . . . . . . . . 9 ⊢ (𝐽 Cn 𝐾) = (𝐽 Cn 𝐾) | |
| 8 | 2, 1, 7, 4 | fcnre 45012 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝑇⟶ℝ) |
| 9 | 8 | frnd 6698 | . . . . . . 7 ⊢ (𝜑 → ran 𝐹 ⊆ ℝ) |
| 10 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥))) → ran 𝐹 ⊆ ℝ) |
| 11 | 8 | ffund 6694 | . . . . . . . . 9 ⊢ (𝜑 → Fun 𝐹) |
| 12 | 11 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → Fun 𝐹) |
| 13 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → 𝑥 ∈ 𝑇) | |
| 14 | 8 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → 𝐹:𝑇⟶ℝ) |
| 15 | 14 | fdmd 6700 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → dom 𝐹 = 𝑇) |
| 16 | 13, 15 | eleqtrrd 2832 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → 𝑥 ∈ dom 𝐹) |
| 17 | fvelrn 7050 | . . . . . . . 8 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ ran 𝐹) | |
| 18 | 12, 16, 17 | syl2anc 584 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝐹‘𝑥) ∈ ran 𝐹) |
| 19 | 18 | adantrr 717 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥))) → (𝐹‘𝑥) ∈ ran 𝐹) |
| 20 | ffn 6690 | . . . . . . . . . . . . 13 ⊢ (𝐹:𝑇⟶ℝ → 𝐹 Fn 𝑇) | |
| 21 | fvelrnb 6923 | . . . . . . . . . . . . 13 ⊢ (𝐹 Fn 𝑇 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑠 ∈ 𝑇 (𝐹‘𝑠) = 𝑦)) | |
| 22 | 8, 20, 21 | 3syl 18 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑠 ∈ 𝑇 (𝐹‘𝑠) = 𝑦)) |
| 23 | 22 | biimpa 476 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → ∃𝑠 ∈ 𝑇 (𝐹‘𝑠) = 𝑦) |
| 24 | df-rex 3055 | . . . . . . . . . . 11 ⊢ (∃𝑠 ∈ 𝑇 (𝐹‘𝑠) = 𝑦 ↔ ∃𝑠(𝑠 ∈ 𝑇 ∧ (𝐹‘𝑠) = 𝑦)) | |
| 25 | 23, 24 | sylib 218 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → ∃𝑠(𝑠 ∈ 𝑇 ∧ (𝐹‘𝑠) = 𝑦)) |
| 26 | 25 | adantlr 715 | . . . . . . . . 9 ⊢ (((𝜑 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥)) ∧ 𝑦 ∈ ran 𝐹) → ∃𝑠(𝑠 ∈ 𝑇 ∧ (𝐹‘𝑠) = 𝑦)) |
| 27 | simprr 772 | . . . . . . . . . 10 ⊢ ((((𝜑 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥)) ∧ 𝑦 ∈ ran 𝐹) ∧ (𝑠 ∈ 𝑇 ∧ (𝐹‘𝑠) = 𝑦)) → (𝐹‘𝑠) = 𝑦) | |
| 28 | simpllr 775 | . . . . . . . . . . 11 ⊢ ((((𝜑 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥)) ∧ 𝑦 ∈ ran 𝐹) ∧ (𝑠 ∈ 𝑇 ∧ (𝐹‘𝑠) = 𝑦)) → ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥)) | |
| 29 | simprl 770 | . . . . . . . . . . 11 ⊢ ((((𝜑 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥)) ∧ 𝑦 ∈ ran 𝐹) ∧ (𝑠 ∈ 𝑇 ∧ (𝐹‘𝑠) = 𝑦)) → 𝑠 ∈ 𝑇) | |
| 30 | fveq2 6860 | . . . . . . . . . . . . 13 ⊢ (𝑡 = 𝑠 → (𝐹‘𝑡) = (𝐹‘𝑠)) | |
| 31 | 30 | breq1d 5119 | . . . . . . . . . . . 12 ⊢ (𝑡 = 𝑠 → ((𝐹‘𝑡) ≤ (𝐹‘𝑥) ↔ (𝐹‘𝑠) ≤ (𝐹‘𝑥))) |
| 32 | 31 | rspccva 3590 | . . . . . . . . . . 11 ⊢ ((∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥) ∧ 𝑠 ∈ 𝑇) → (𝐹‘𝑠) ≤ (𝐹‘𝑥)) |
| 33 | 28, 29, 32 | syl2anc 584 | . . . . . . . . . 10 ⊢ ((((𝜑 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥)) ∧ 𝑦 ∈ ran 𝐹) ∧ (𝑠 ∈ 𝑇 ∧ (𝐹‘𝑠) = 𝑦)) → (𝐹‘𝑠) ≤ (𝐹‘𝑥)) |
| 34 | 27, 33 | eqbrtrrd 5133 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥)) ∧ 𝑦 ∈ ran 𝐹) ∧ (𝑠 ∈ 𝑇 ∧ (𝐹‘𝑠) = 𝑦)) → 𝑦 ≤ (𝐹‘𝑥)) |
| 35 | 26, 34 | exlimddv 1935 | . . . . . . . 8 ⊢ (((𝜑 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥)) ∧ 𝑦 ∈ ran 𝐹) → 𝑦 ≤ (𝐹‘𝑥)) |
| 36 | 35 | ralrimiva 3126 | . . . . . . 7 ⊢ ((𝜑 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥)) → ∀𝑦 ∈ ran 𝐹 𝑦 ≤ (𝐹‘𝑥)) |
| 37 | 36 | adantrl 716 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥))) → ∀𝑦 ∈ ran 𝐹 𝑦 ≤ (𝐹‘𝑥)) |
| 38 | ubelsupr 45007 | . . . . . 6 ⊢ ((ran 𝐹 ⊆ ℝ ∧ (𝐹‘𝑥) ∈ ran 𝐹 ∧ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ (𝐹‘𝑥)) → (𝐹‘𝑥) = sup(ran 𝐹, ℝ, < )) | |
| 39 | 10, 19, 37, 38 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥))) → (𝐹‘𝑥) = sup(ran 𝐹, ℝ, < )) |
| 40 | 39 | eqcomd 2736 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥))) → sup(ran 𝐹, ℝ, < ) = (𝐹‘𝑥)) |
| 41 | 40, 19 | eqeltrd 2829 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥))) → sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹) |
| 42 | 10, 41 | sseldd 3949 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥))) → sup(ran 𝐹, ℝ, < ) ∈ ℝ) |
| 43 | simplrr 777 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥))) ∧ 𝑠 ∈ 𝑇) → ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥)) | |
| 44 | 43, 32 | sylancom 588 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥))) ∧ 𝑠 ∈ 𝑇) → (𝐹‘𝑠) ≤ (𝐹‘𝑥)) |
| 45 | 40 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥))) ∧ 𝑠 ∈ 𝑇) → sup(ran 𝐹, ℝ, < ) = (𝐹‘𝑥)) |
| 46 | 44, 45 | breqtrrd 5137 | . . . . 5 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥))) ∧ 𝑠 ∈ 𝑇) → (𝐹‘𝑠) ≤ sup(ran 𝐹, ℝ, < )) |
| 47 | 46 | ralrimiva 3126 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥))) → ∀𝑠 ∈ 𝑇 (𝐹‘𝑠) ≤ sup(ran 𝐹, ℝ, < )) |
| 48 | 30 | breq1d 5119 | . . . . 5 ⊢ (𝑡 = 𝑠 → ((𝐹‘𝑡) ≤ sup(ran 𝐹, ℝ, < ) ↔ (𝐹‘𝑠) ≤ sup(ran 𝐹, ℝ, < ))) |
| 49 | 48 | cbvralvw 3216 | . . . 4 ⊢ (∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ sup(ran 𝐹, ℝ, < ) ↔ ∀𝑠 ∈ 𝑇 (𝐹‘𝑠) ≤ sup(ran 𝐹, ℝ, < )) |
| 50 | 47, 49 | sylibr 234 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥))) → ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ sup(ran 𝐹, ℝ, < )) |
| 51 | 41, 42, 50 | 3jca 1128 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥))) → (sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ∧ sup(ran 𝐹, ℝ, < ) ∈ ℝ ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ sup(ran 𝐹, ℝ, < ))) |
| 52 | 6, 51 | rexlimddv 3141 | 1 ⊢ (𝜑 → (sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ∧ sup(ran 𝐹, ℝ, < ) ∈ ℝ ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ sup(ran 𝐹, ℝ, < ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 ⊆ wss 3916 ∅c0 4298 ∪ cuni 4873 class class class wbr 5109 dom cdm 5640 ran crn 5641 Fun wfun 6507 Fn wfn 6508 ⟶wf 6509 ‘cfv 6513 (class class class)co 7389 supcsup 9397 ℝcr 11073 < clt 11214 ≤ cle 11215 (,)cioo 13312 topGenctg 17406 Cn ccn 23117 Compccmp 23279 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-iin 4960 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-se 5594 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-isom 6522 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-of 7655 df-om 7845 df-1st 7970 df-2nd 7971 df-supp 8142 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-2o 8437 df-er 8673 df-map 8803 df-ixp 8873 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-fsupp 9319 df-fi 9368 df-sup 9399 df-inf 9400 df-oi 9469 df-card 9898 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-uz 12800 df-q 12914 df-rp 12958 df-xneg 13078 df-xadd 13079 df-xmul 13080 df-ioo 13316 df-icc 13319 df-fz 13475 df-fzo 13622 df-seq 13973 df-exp 14033 df-hash 14302 df-cj 15071 df-re 15072 df-im 15073 df-sqrt 15207 df-abs 15208 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-hom 17250 df-cco 17251 df-rest 17391 df-topn 17392 df-0g 17410 df-gsum 17411 df-topgen 17412 df-pt 17413 df-prds 17416 df-xrs 17471 df-qtop 17476 df-imas 17477 df-xps 17479 df-mre 17553 df-mrc 17554 df-acs 17556 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-submnd 18717 df-mulg 19006 df-cntz 19255 df-cmn 19718 df-psmet 21262 df-xmet 21263 df-met 21264 df-bl 21265 df-mopn 21266 df-cnfld 21271 df-top 22787 df-topon 22804 df-topsp 22826 df-bases 22839 df-cn 23120 df-cnp 23121 df-cmp 23280 df-tx 23455 df-hmeo 23648 df-xms 24214 df-ms 24215 df-tms 24216 |
| This theorem is referenced by: stoweidlem36 46027 |
| Copyright terms: Public domain | W3C validator |