Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncmpmax Structured version   Visualization version   GIF version

Theorem cncmpmax 45037
Description: When the hypothesis for the extreme value theorem hold, then the sup of the range of the function belongs to the range, it is real and it an upper bound of the range. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
cncmpmax.1 𝑇 = 𝐽
cncmpmax.2 𝐾 = (topGen‘ran (,))
cncmpmax.3 (𝜑𝐽 ∈ Comp)
cncmpmax.4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
cncmpmax.5 (𝜑𝑇 ≠ ∅)
Assertion
Ref Expression
cncmpmax (𝜑 → (sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ∧ sup(ran 𝐹, ℝ, < ) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ sup(ran 𝐹, ℝ, < )))
Distinct variable groups:   𝑡,𝐹   𝑡,𝑇   𝜑,𝑡   𝑡,𝐽   𝑡,𝐾

Proof of Theorem cncmpmax
Dummy variables 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cncmpmax.1 . . 3 𝑇 = 𝐽
2 cncmpmax.2 . . 3 𝐾 = (topGen‘ran (,))
3 cncmpmax.3 . . 3 (𝜑𝐽 ∈ Comp)
4 cncmpmax.4 . . 3 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
5 cncmpmax.5 . . 3 (𝜑𝑇 ≠ ∅)
61, 2, 3, 4, 5evth 24991 . 2 (𝜑 → ∃𝑥𝑇𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))
7 eqid 2737 . . . . . . . . 9 (𝐽 Cn 𝐾) = (𝐽 Cn 𝐾)
82, 1, 7, 4fcnre 45030 . . . . . . . 8 (𝜑𝐹:𝑇⟶ℝ)
98frnd 6744 . . . . . . 7 (𝜑 → ran 𝐹 ⊆ ℝ)
109adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) → ran 𝐹 ⊆ ℝ)
118ffund 6740 . . . . . . . . 9 (𝜑 → Fun 𝐹)
1211adantr 480 . . . . . . . 8 ((𝜑𝑥𝑇) → Fun 𝐹)
13 simpr 484 . . . . . . . . 9 ((𝜑𝑥𝑇) → 𝑥𝑇)
148adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝑇) → 𝐹:𝑇⟶ℝ)
1514fdmd 6746 . . . . . . . . 9 ((𝜑𝑥𝑇) → dom 𝐹 = 𝑇)
1613, 15eleqtrrd 2844 . . . . . . . 8 ((𝜑𝑥𝑇) → 𝑥 ∈ dom 𝐹)
17 fvelrn 7096 . . . . . . . 8 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ ran 𝐹)
1812, 16, 17syl2anc 584 . . . . . . 7 ((𝜑𝑥𝑇) → (𝐹𝑥) ∈ ran 𝐹)
1918adantrr 717 . . . . . 6 ((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) → (𝐹𝑥) ∈ ran 𝐹)
20 ffn 6736 . . . . . . . . . . . . 13 (𝐹:𝑇⟶ℝ → 𝐹 Fn 𝑇)
21 fvelrnb 6969 . . . . . . . . . . . . 13 (𝐹 Fn 𝑇 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑠𝑇 (𝐹𝑠) = 𝑦))
228, 20, 213syl 18 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑠𝑇 (𝐹𝑠) = 𝑦))
2322biimpa 476 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ran 𝐹) → ∃𝑠𝑇 (𝐹𝑠) = 𝑦)
24 df-rex 3071 . . . . . . . . . . 11 (∃𝑠𝑇 (𝐹𝑠) = 𝑦 ↔ ∃𝑠(𝑠𝑇 ∧ (𝐹𝑠) = 𝑦))
2523, 24sylib 218 . . . . . . . . . 10 ((𝜑𝑦 ∈ ran 𝐹) → ∃𝑠(𝑠𝑇 ∧ (𝐹𝑠) = 𝑦))
2625adantlr 715 . . . . . . . . 9 (((𝜑 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥)) ∧ 𝑦 ∈ ran 𝐹) → ∃𝑠(𝑠𝑇 ∧ (𝐹𝑠) = 𝑦))
27 simprr 773 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥)) ∧ 𝑦 ∈ ran 𝐹) ∧ (𝑠𝑇 ∧ (𝐹𝑠) = 𝑦)) → (𝐹𝑠) = 𝑦)
28 simpllr 776 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥)) ∧ 𝑦 ∈ ran 𝐹) ∧ (𝑠𝑇 ∧ (𝐹𝑠) = 𝑦)) → ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))
29 simprl 771 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥)) ∧ 𝑦 ∈ ran 𝐹) ∧ (𝑠𝑇 ∧ (𝐹𝑠) = 𝑦)) → 𝑠𝑇)
30 fveq2 6906 . . . . . . . . . . . . 13 (𝑡 = 𝑠 → (𝐹𝑡) = (𝐹𝑠))
3130breq1d 5153 . . . . . . . . . . . 12 (𝑡 = 𝑠 → ((𝐹𝑡) ≤ (𝐹𝑥) ↔ (𝐹𝑠) ≤ (𝐹𝑥)))
3231rspccva 3621 . . . . . . . . . . 11 ((∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥) ∧ 𝑠𝑇) → (𝐹𝑠) ≤ (𝐹𝑥))
3328, 29, 32syl2anc 584 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥)) ∧ 𝑦 ∈ ran 𝐹) ∧ (𝑠𝑇 ∧ (𝐹𝑠) = 𝑦)) → (𝐹𝑠) ≤ (𝐹𝑥))
3427, 33eqbrtrrd 5167 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥)) ∧ 𝑦 ∈ ran 𝐹) ∧ (𝑠𝑇 ∧ (𝐹𝑠) = 𝑦)) → 𝑦 ≤ (𝐹𝑥))
3526, 34exlimddv 1935 . . . . . . . 8 (((𝜑 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥)) ∧ 𝑦 ∈ ran 𝐹) → 𝑦 ≤ (𝐹𝑥))
3635ralrimiva 3146 . . . . . . 7 ((𝜑 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥)) → ∀𝑦 ∈ ran 𝐹 𝑦 ≤ (𝐹𝑥))
3736adantrl 716 . . . . . 6 ((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) → ∀𝑦 ∈ ran 𝐹 𝑦 ≤ (𝐹𝑥))
38 ubelsupr 45025 . . . . . 6 ((ran 𝐹 ⊆ ℝ ∧ (𝐹𝑥) ∈ ran 𝐹 ∧ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ (𝐹𝑥)) → (𝐹𝑥) = sup(ran 𝐹, ℝ, < ))
3910, 19, 37, 38syl3anc 1373 . . . . 5 ((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) → (𝐹𝑥) = sup(ran 𝐹, ℝ, < ))
4039eqcomd 2743 . . . 4 ((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) → sup(ran 𝐹, ℝ, < ) = (𝐹𝑥))
4140, 19eqeltrd 2841 . . 3 ((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) → sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹)
4210, 41sseldd 3984 . . 3 ((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) → sup(ran 𝐹, ℝ, < ) ∈ ℝ)
43 simplrr 778 . . . . . . 7 (((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) ∧ 𝑠𝑇) → ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))
4443, 32sylancom 588 . . . . . 6 (((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) ∧ 𝑠𝑇) → (𝐹𝑠) ≤ (𝐹𝑥))
4540adantr 480 . . . . . 6 (((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) ∧ 𝑠𝑇) → sup(ran 𝐹, ℝ, < ) = (𝐹𝑥))
4644, 45breqtrrd 5171 . . . . 5 (((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) ∧ 𝑠𝑇) → (𝐹𝑠) ≤ sup(ran 𝐹, ℝ, < ))
4746ralrimiva 3146 . . . 4 ((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) → ∀𝑠𝑇 (𝐹𝑠) ≤ sup(ran 𝐹, ℝ, < ))
4830breq1d 5153 . . . . 5 (𝑡 = 𝑠 → ((𝐹𝑡) ≤ sup(ran 𝐹, ℝ, < ) ↔ (𝐹𝑠) ≤ sup(ran 𝐹, ℝ, < )))
4948cbvralvw 3237 . . . 4 (∀𝑡𝑇 (𝐹𝑡) ≤ sup(ran 𝐹, ℝ, < ) ↔ ∀𝑠𝑇 (𝐹𝑠) ≤ sup(ran 𝐹, ℝ, < ))
5047, 49sylibr 234 . . 3 ((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) → ∀𝑡𝑇 (𝐹𝑡) ≤ sup(ran 𝐹, ℝ, < ))
5141, 42, 503jca 1129 . 2 ((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) → (sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ∧ sup(ran 𝐹, ℝ, < ) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ sup(ran 𝐹, ℝ, < )))
526, 51rexlimddv 3161 1 (𝜑 → (sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ∧ sup(ran 𝐹, ℝ, < ) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ sup(ran 𝐹, ℝ, < )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wex 1779  wcel 2108  wne 2940  wral 3061  wrex 3070  wss 3951  c0 4333   cuni 4907   class class class wbr 5143  dom cdm 5685  ran crn 5686  Fun wfun 6555   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  supcsup 9480  cr 11154   < clt 11295  cle 11296  (,)cioo 13387  topGenctg 17482   Cn ccn 23232  Compccmp 23394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-icc 13394  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cn 23235  df-cnp 23236  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-xms 24330  df-ms 24331  df-tms 24332
This theorem is referenced by:  stoweidlem36  46051
  Copyright terms: Public domain W3C validator