Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncmpmax Structured version   Visualization version   GIF version

Theorem cncmpmax 45048
Description: When the hypothesis for the extreme value theorem hold, then the sup of the range of the function belongs to the range, it is real and it an upper bound of the range. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
cncmpmax.1 𝑇 = 𝐽
cncmpmax.2 𝐾 = (topGen‘ran (,))
cncmpmax.3 (𝜑𝐽 ∈ Comp)
cncmpmax.4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
cncmpmax.5 (𝜑𝑇 ≠ ∅)
Assertion
Ref Expression
cncmpmax (𝜑 → (sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ∧ sup(ran 𝐹, ℝ, < ) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ sup(ran 𝐹, ℝ, < )))
Distinct variable groups:   𝑡,𝐹   𝑡,𝑇   𝜑,𝑡   𝑡,𝐽   𝑡,𝐾

Proof of Theorem cncmpmax
Dummy variables 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cncmpmax.1 . . 3 𝑇 = 𝐽
2 cncmpmax.2 . . 3 𝐾 = (topGen‘ran (,))
3 cncmpmax.3 . . 3 (𝜑𝐽 ∈ Comp)
4 cncmpmax.4 . . 3 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
5 cncmpmax.5 . . 3 (𝜑𝑇 ≠ ∅)
61, 2, 3, 4, 5evth 24878 . 2 (𝜑 → ∃𝑥𝑇𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))
7 eqid 2730 . . . . . . . . 9 (𝐽 Cn 𝐾) = (𝐽 Cn 𝐾)
82, 1, 7, 4fcnre 45041 . . . . . . . 8 (𝜑𝐹:𝑇⟶ℝ)
98frnd 6655 . . . . . . 7 (𝜑 → ran 𝐹 ⊆ ℝ)
109adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) → ran 𝐹 ⊆ ℝ)
118ffund 6651 . . . . . . . . 9 (𝜑 → Fun 𝐹)
1211adantr 480 . . . . . . . 8 ((𝜑𝑥𝑇) → Fun 𝐹)
13 simpr 484 . . . . . . . . 9 ((𝜑𝑥𝑇) → 𝑥𝑇)
148adantr 480 . . . . . . . . . 10 ((𝜑𝑥𝑇) → 𝐹:𝑇⟶ℝ)
1514fdmd 6657 . . . . . . . . 9 ((𝜑𝑥𝑇) → dom 𝐹 = 𝑇)
1613, 15eleqtrrd 2832 . . . . . . . 8 ((𝜑𝑥𝑇) → 𝑥 ∈ dom 𝐹)
17 fvelrn 7004 . . . . . . . 8 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ ran 𝐹)
1812, 16, 17syl2anc 584 . . . . . . 7 ((𝜑𝑥𝑇) → (𝐹𝑥) ∈ ran 𝐹)
1918adantrr 717 . . . . . 6 ((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) → (𝐹𝑥) ∈ ran 𝐹)
20 ffn 6647 . . . . . . . . . . . . 13 (𝐹:𝑇⟶ℝ → 𝐹 Fn 𝑇)
21 fvelrnb 6877 . . . . . . . . . . . . 13 (𝐹 Fn 𝑇 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑠𝑇 (𝐹𝑠) = 𝑦))
228, 20, 213syl 18 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑠𝑇 (𝐹𝑠) = 𝑦))
2322biimpa 476 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ran 𝐹) → ∃𝑠𝑇 (𝐹𝑠) = 𝑦)
24 df-rex 3055 . . . . . . . . . . 11 (∃𝑠𝑇 (𝐹𝑠) = 𝑦 ↔ ∃𝑠(𝑠𝑇 ∧ (𝐹𝑠) = 𝑦))
2523, 24sylib 218 . . . . . . . . . 10 ((𝜑𝑦 ∈ ran 𝐹) → ∃𝑠(𝑠𝑇 ∧ (𝐹𝑠) = 𝑦))
2625adantlr 715 . . . . . . . . 9 (((𝜑 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥)) ∧ 𝑦 ∈ ran 𝐹) → ∃𝑠(𝑠𝑇 ∧ (𝐹𝑠) = 𝑦))
27 simprr 772 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥)) ∧ 𝑦 ∈ ran 𝐹) ∧ (𝑠𝑇 ∧ (𝐹𝑠) = 𝑦)) → (𝐹𝑠) = 𝑦)
28 simpllr 775 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥)) ∧ 𝑦 ∈ ran 𝐹) ∧ (𝑠𝑇 ∧ (𝐹𝑠) = 𝑦)) → ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))
29 simprl 770 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥)) ∧ 𝑦 ∈ ran 𝐹) ∧ (𝑠𝑇 ∧ (𝐹𝑠) = 𝑦)) → 𝑠𝑇)
30 fveq2 6817 . . . . . . . . . . . . 13 (𝑡 = 𝑠 → (𝐹𝑡) = (𝐹𝑠))
3130breq1d 5099 . . . . . . . . . . . 12 (𝑡 = 𝑠 → ((𝐹𝑡) ≤ (𝐹𝑥) ↔ (𝐹𝑠) ≤ (𝐹𝑥)))
3231rspccva 3574 . . . . . . . . . . 11 ((∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥) ∧ 𝑠𝑇) → (𝐹𝑠) ≤ (𝐹𝑥))
3328, 29, 32syl2anc 584 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥)) ∧ 𝑦 ∈ ran 𝐹) ∧ (𝑠𝑇 ∧ (𝐹𝑠) = 𝑦)) → (𝐹𝑠) ≤ (𝐹𝑥))
3427, 33eqbrtrrd 5113 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥)) ∧ 𝑦 ∈ ran 𝐹) ∧ (𝑠𝑇 ∧ (𝐹𝑠) = 𝑦)) → 𝑦 ≤ (𝐹𝑥))
3526, 34exlimddv 1936 . . . . . . . 8 (((𝜑 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥)) ∧ 𝑦 ∈ ran 𝐹) → 𝑦 ≤ (𝐹𝑥))
3635ralrimiva 3122 . . . . . . 7 ((𝜑 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥)) → ∀𝑦 ∈ ran 𝐹 𝑦 ≤ (𝐹𝑥))
3736adantrl 716 . . . . . 6 ((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) → ∀𝑦 ∈ ran 𝐹 𝑦 ≤ (𝐹𝑥))
38 ubelsupr 45036 . . . . . 6 ((ran 𝐹 ⊆ ℝ ∧ (𝐹𝑥) ∈ ran 𝐹 ∧ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ (𝐹𝑥)) → (𝐹𝑥) = sup(ran 𝐹, ℝ, < ))
3910, 19, 37, 38syl3anc 1373 . . . . 5 ((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) → (𝐹𝑥) = sup(ran 𝐹, ℝ, < ))
4039eqcomd 2736 . . . 4 ((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) → sup(ran 𝐹, ℝ, < ) = (𝐹𝑥))
4140, 19eqeltrd 2829 . . 3 ((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) → sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹)
4210, 41sseldd 3933 . . 3 ((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) → sup(ran 𝐹, ℝ, < ) ∈ ℝ)
43 simplrr 777 . . . . . . 7 (((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) ∧ 𝑠𝑇) → ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))
4443, 32sylancom 588 . . . . . 6 (((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) ∧ 𝑠𝑇) → (𝐹𝑠) ≤ (𝐹𝑥))
4540adantr 480 . . . . . 6 (((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) ∧ 𝑠𝑇) → sup(ran 𝐹, ℝ, < ) = (𝐹𝑥))
4644, 45breqtrrd 5117 . . . . 5 (((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) ∧ 𝑠𝑇) → (𝐹𝑠) ≤ sup(ran 𝐹, ℝ, < ))
4746ralrimiva 3122 . . . 4 ((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) → ∀𝑠𝑇 (𝐹𝑠) ≤ sup(ran 𝐹, ℝ, < ))
4830breq1d 5099 . . . . 5 (𝑡 = 𝑠 → ((𝐹𝑡) ≤ sup(ran 𝐹, ℝ, < ) ↔ (𝐹𝑠) ≤ sup(ran 𝐹, ℝ, < )))
4948cbvralvw 3208 . . . 4 (∀𝑡𝑇 (𝐹𝑡) ≤ sup(ran 𝐹, ℝ, < ) ↔ ∀𝑠𝑇 (𝐹𝑠) ≤ sup(ran 𝐹, ℝ, < ))
5047, 49sylibr 234 . . 3 ((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) → ∀𝑡𝑇 (𝐹𝑡) ≤ sup(ran 𝐹, ℝ, < ))
5141, 42, 503jca 1128 . 2 ((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) → (sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ∧ sup(ran 𝐹, ℝ, < ) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ sup(ran 𝐹, ℝ, < )))
526, 51rexlimddv 3137 1 (𝜑 → (sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ∧ sup(ran 𝐹, ℝ, < ) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ sup(ran 𝐹, ℝ, < )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2110  wne 2926  wral 3045  wrex 3054  wss 3900  c0 4281   cuni 4857   class class class wbr 5089  dom cdm 5614  ran crn 5615  Fun wfun 6471   Fn wfn 6472  wf 6473  cfv 6477  (class class class)co 7341  supcsup 9319  cr 10997   < clt 11138  cle 11139  (,)cioo 13237  topGenctg 17333   Cn ccn 23132  Compccmp 23294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-q 12839  df-rp 12883  df-xneg 13003  df-xadd 13004  df-xmul 13005  df-ioo 13241  df-icc 13244  df-fz 13400  df-fzo 13547  df-seq 13901  df-exp 13961  df-hash 14230  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-starv 17168  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ds 17175  df-unif 17176  df-hom 17177  df-cco 17178  df-rest 17318  df-topn 17319  df-0g 17337  df-gsum 17338  df-topgen 17339  df-pt 17340  df-prds 17343  df-xrs 17398  df-qtop 17403  df-imas 17404  df-xps 17406  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-submnd 18684  df-mulg 18973  df-cntz 19222  df-cmn 19687  df-psmet 21276  df-xmet 21277  df-met 21278  df-bl 21279  df-mopn 21280  df-cnfld 21285  df-top 22802  df-topon 22819  df-topsp 22841  df-bases 22854  df-cn 23135  df-cnp 23136  df-cmp 23295  df-tx 23470  df-hmeo 23663  df-xms 24228  df-ms 24229  df-tms 24230
This theorem is referenced by:  stoweidlem36  46053
  Copyright terms: Public domain W3C validator