Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncmpmax Structured version   Visualization version   GIF version

Theorem cncmpmax 41287
Description: When the hypothesis for the extreme value theorem hold, then the sup of the range of the function belongs to the range, it is real and it an upper bound of the range. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
cncmpmax.1 𝑇 = 𝐽
cncmpmax.2 𝐾 = (topGen‘ran (,))
cncmpmax.3 (𝜑𝐽 ∈ Comp)
cncmpmax.4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
cncmpmax.5 (𝜑𝑇 ≠ ∅)
Assertion
Ref Expression
cncmpmax (𝜑 → (sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ∧ sup(ran 𝐹, ℝ, < ) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ sup(ran 𝐹, ℝ, < )))
Distinct variable groups:   𝑡,𝐹   𝑡,𝑇   𝜑,𝑡   𝑡,𝐽   𝑡,𝐾

Proof of Theorem cncmpmax
Dummy variables 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cncmpmax.1 . . 3 𝑇 = 𝐽
2 cncmpmax.2 . . 3 𝐾 = (topGen‘ran (,))
3 cncmpmax.3 . . 3 (𝜑𝐽 ∈ Comp)
4 cncmpmax.4 . . 3 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
5 cncmpmax.5 . . 3 (𝜑𝑇 ≠ ∅)
61, 2, 3, 4, 5evth 23562 . 2 (𝜑 → ∃𝑥𝑇𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))
7 eqid 2821 . . . . . . . . 9 (𝐽 Cn 𝐾) = (𝐽 Cn 𝐾)
82, 1, 7, 4fcnre 41280 . . . . . . . 8 (𝜑𝐹:𝑇⟶ℝ)
98frnd 6520 . . . . . . 7 (𝜑 → ran 𝐹 ⊆ ℝ)
109adantr 483 . . . . . 6 ((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) → ran 𝐹 ⊆ ℝ)
118ffund 6517 . . . . . . . . 9 (𝜑 → Fun 𝐹)
1211adantr 483 . . . . . . . 8 ((𝜑𝑥𝑇) → Fun 𝐹)
13 simpr 487 . . . . . . . . 9 ((𝜑𝑥𝑇) → 𝑥𝑇)
148adantr 483 . . . . . . . . . 10 ((𝜑𝑥𝑇) → 𝐹:𝑇⟶ℝ)
1514fdmd 6522 . . . . . . . . 9 ((𝜑𝑥𝑇) → dom 𝐹 = 𝑇)
1613, 15eleqtrrd 2916 . . . . . . . 8 ((𝜑𝑥𝑇) → 𝑥 ∈ dom 𝐹)
17 fvelrn 6843 . . . . . . . 8 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ ran 𝐹)
1812, 16, 17syl2anc 586 . . . . . . 7 ((𝜑𝑥𝑇) → (𝐹𝑥) ∈ ran 𝐹)
1918adantrr 715 . . . . . 6 ((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) → (𝐹𝑥) ∈ ran 𝐹)
20 ffn 6513 . . . . . . . . . . . . 13 (𝐹:𝑇⟶ℝ → 𝐹 Fn 𝑇)
21 fvelrnb 6725 . . . . . . . . . . . . 13 (𝐹 Fn 𝑇 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑠𝑇 (𝐹𝑠) = 𝑦))
228, 20, 213syl 18 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑠𝑇 (𝐹𝑠) = 𝑦))
2322biimpa 479 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ran 𝐹) → ∃𝑠𝑇 (𝐹𝑠) = 𝑦)
24 df-rex 3144 . . . . . . . . . . 11 (∃𝑠𝑇 (𝐹𝑠) = 𝑦 ↔ ∃𝑠(𝑠𝑇 ∧ (𝐹𝑠) = 𝑦))
2523, 24sylib 220 . . . . . . . . . 10 ((𝜑𝑦 ∈ ran 𝐹) → ∃𝑠(𝑠𝑇 ∧ (𝐹𝑠) = 𝑦))
2625adantlr 713 . . . . . . . . 9 (((𝜑 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥)) ∧ 𝑦 ∈ ran 𝐹) → ∃𝑠(𝑠𝑇 ∧ (𝐹𝑠) = 𝑦))
27 simprr 771 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥)) ∧ 𝑦 ∈ ran 𝐹) ∧ (𝑠𝑇 ∧ (𝐹𝑠) = 𝑦)) → (𝐹𝑠) = 𝑦)
28 simpllr 774 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥)) ∧ 𝑦 ∈ ran 𝐹) ∧ (𝑠𝑇 ∧ (𝐹𝑠) = 𝑦)) → ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))
29 simprl 769 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥)) ∧ 𝑦 ∈ ran 𝐹) ∧ (𝑠𝑇 ∧ (𝐹𝑠) = 𝑦)) → 𝑠𝑇)
30 fveq2 6669 . . . . . . . . . . . . 13 (𝑡 = 𝑠 → (𝐹𝑡) = (𝐹𝑠))
3130breq1d 5075 . . . . . . . . . . . 12 (𝑡 = 𝑠 → ((𝐹𝑡) ≤ (𝐹𝑥) ↔ (𝐹𝑠) ≤ (𝐹𝑥)))
3231rspccva 3621 . . . . . . . . . . 11 ((∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥) ∧ 𝑠𝑇) → (𝐹𝑠) ≤ (𝐹𝑥))
3328, 29, 32syl2anc 586 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥)) ∧ 𝑦 ∈ ran 𝐹) ∧ (𝑠𝑇 ∧ (𝐹𝑠) = 𝑦)) → (𝐹𝑠) ≤ (𝐹𝑥))
3427, 33eqbrtrrd 5089 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥)) ∧ 𝑦 ∈ ran 𝐹) ∧ (𝑠𝑇 ∧ (𝐹𝑠) = 𝑦)) → 𝑦 ≤ (𝐹𝑥))
3526, 34exlimddv 1932 . . . . . . . 8 (((𝜑 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥)) ∧ 𝑦 ∈ ran 𝐹) → 𝑦 ≤ (𝐹𝑥))
3635ralrimiva 3182 . . . . . . 7 ((𝜑 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥)) → ∀𝑦 ∈ ran 𝐹 𝑦 ≤ (𝐹𝑥))
3736adantrl 714 . . . . . 6 ((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) → ∀𝑦 ∈ ran 𝐹 𝑦 ≤ (𝐹𝑥))
38 ubelsupr 41275 . . . . . 6 ((ran 𝐹 ⊆ ℝ ∧ (𝐹𝑥) ∈ ran 𝐹 ∧ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ (𝐹𝑥)) → (𝐹𝑥) = sup(ran 𝐹, ℝ, < ))
3910, 19, 37, 38syl3anc 1367 . . . . 5 ((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) → (𝐹𝑥) = sup(ran 𝐹, ℝ, < ))
4039eqcomd 2827 . . . 4 ((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) → sup(ran 𝐹, ℝ, < ) = (𝐹𝑥))
4140, 19eqeltrd 2913 . . 3 ((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) → sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹)
4210, 41sseldd 3967 . . 3 ((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) → sup(ran 𝐹, ℝ, < ) ∈ ℝ)
43 simplrr 776 . . . . . . 7 (((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) ∧ 𝑠𝑇) → ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))
4443, 32sylancom 590 . . . . . 6 (((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) ∧ 𝑠𝑇) → (𝐹𝑠) ≤ (𝐹𝑥))
4540adantr 483 . . . . . 6 (((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) ∧ 𝑠𝑇) → sup(ran 𝐹, ℝ, < ) = (𝐹𝑥))
4644, 45breqtrrd 5093 . . . . 5 (((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) ∧ 𝑠𝑇) → (𝐹𝑠) ≤ sup(ran 𝐹, ℝ, < ))
4746ralrimiva 3182 . . . 4 ((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) → ∀𝑠𝑇 (𝐹𝑠) ≤ sup(ran 𝐹, ℝ, < ))
4830breq1d 5075 . . . . 5 (𝑡 = 𝑠 → ((𝐹𝑡) ≤ sup(ran 𝐹, ℝ, < ) ↔ (𝐹𝑠) ≤ sup(ran 𝐹, ℝ, < )))
4948cbvralvw 3449 . . . 4 (∀𝑡𝑇 (𝐹𝑡) ≤ sup(ran 𝐹, ℝ, < ) ↔ ∀𝑠𝑇 (𝐹𝑠) ≤ sup(ran 𝐹, ℝ, < ))
5047, 49sylibr 236 . . 3 ((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) → ∀𝑡𝑇 (𝐹𝑡) ≤ sup(ran 𝐹, ℝ, < ))
5141, 42, 503jca 1124 . 2 ((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) → (sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ∧ sup(ran 𝐹, ℝ, < ) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ sup(ran 𝐹, ℝ, < )))
526, 51rexlimddv 3291 1 (𝜑 → (sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ∧ sup(ran 𝐹, ℝ, < ) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ sup(ran 𝐹, ℝ, < )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wex 1776  wcel 2110  wne 3016  wral 3138  wrex 3139  wss 3935  c0 4290   cuni 4837   class class class wbr 5065  dom cdm 5554  ran crn 5555  Fun wfun 6348   Fn wfn 6349  wf 6350  cfv 6354  (class class class)co 7155  supcsup 8903  cr 10535   < clt 10674  cle 10675  (,)cioo 12737  topGenctg 16710   Cn ccn 21831  Compccmp 21993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-mulf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-supp 7830  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-er 8288  df-map 8407  df-ixp 8461  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fsupp 8833  df-fi 8874  df-sup 8905  df-inf 8906  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-q 12348  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-ioo 12741  df-icc 12744  df-fz 12892  df-fzo 13033  df-seq 13369  df-exp 13429  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-starv 16579  df-sca 16580  df-vsca 16581  df-ip 16582  df-tset 16583  df-ple 16584  df-ds 16586  df-unif 16587  df-hom 16588  df-cco 16589  df-rest 16695  df-topn 16696  df-0g 16714  df-gsum 16715  df-topgen 16716  df-pt 16717  df-prds 16720  df-xrs 16774  df-qtop 16779  df-imas 16780  df-xps 16782  df-mre 16856  df-mrc 16857  df-acs 16859  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-submnd 17956  df-mulg 18224  df-cntz 18446  df-cmn 18907  df-psmet 20536  df-xmet 20537  df-met 20538  df-bl 20539  df-mopn 20540  df-cnfld 20545  df-top 21501  df-topon 21518  df-topsp 21540  df-bases 21553  df-cn 21834  df-cnp 21835  df-cmp 21994  df-tx 22169  df-hmeo 22362  df-xms 22929  df-ms 22930  df-tms 22931
This theorem is referenced by:  stoweidlem36  42320
  Copyright terms: Public domain W3C validator