| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cncmpmax | Structured version Visualization version GIF version | ||
| Description: When the hypothesis for the extreme value theorem hold, then the sup of the range of the function belongs to the range, it is real and it an upper bound of the range. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| Ref | Expression |
|---|---|
| cncmpmax.1 | ⊢ 𝑇 = ∪ 𝐽 |
| cncmpmax.2 | ⊢ 𝐾 = (topGen‘ran (,)) |
| cncmpmax.3 | ⊢ (𝜑 → 𝐽 ∈ Comp) |
| cncmpmax.4 | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| cncmpmax.5 | ⊢ (𝜑 → 𝑇 ≠ ∅) |
| Ref | Expression |
|---|---|
| cncmpmax | ⊢ (𝜑 → (sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ∧ sup(ran 𝐹, ℝ, < ) ∈ ℝ ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ sup(ran 𝐹, ℝ, < ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncmpmax.1 | . . 3 ⊢ 𝑇 = ∪ 𝐽 | |
| 2 | cncmpmax.2 | . . 3 ⊢ 𝐾 = (topGen‘ran (,)) | |
| 3 | cncmpmax.3 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Comp) | |
| 4 | cncmpmax.4 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
| 5 | cncmpmax.5 | . . 3 ⊢ (𝜑 → 𝑇 ≠ ∅) | |
| 6 | 1, 2, 3, 4, 5 | evth 24878 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑇 ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥)) |
| 7 | eqid 2730 | . . . . . . . . 9 ⊢ (𝐽 Cn 𝐾) = (𝐽 Cn 𝐾) | |
| 8 | 2, 1, 7, 4 | fcnre 45041 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝑇⟶ℝ) |
| 9 | 8 | frnd 6655 | . . . . . . 7 ⊢ (𝜑 → ran 𝐹 ⊆ ℝ) |
| 10 | 9 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥))) → ran 𝐹 ⊆ ℝ) |
| 11 | 8 | ffund 6651 | . . . . . . . . 9 ⊢ (𝜑 → Fun 𝐹) |
| 12 | 11 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → Fun 𝐹) |
| 13 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → 𝑥 ∈ 𝑇) | |
| 14 | 8 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → 𝐹:𝑇⟶ℝ) |
| 15 | 14 | fdmd 6657 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → dom 𝐹 = 𝑇) |
| 16 | 13, 15 | eleqtrrd 2832 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → 𝑥 ∈ dom 𝐹) |
| 17 | fvelrn 7004 | . . . . . . . 8 ⊢ ((Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹) → (𝐹‘𝑥) ∈ ran 𝐹) | |
| 18 | 12, 16, 17 | syl2anc 584 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑇) → (𝐹‘𝑥) ∈ ran 𝐹) |
| 19 | 18 | adantrr 717 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥))) → (𝐹‘𝑥) ∈ ran 𝐹) |
| 20 | ffn 6647 | . . . . . . . . . . . . 13 ⊢ (𝐹:𝑇⟶ℝ → 𝐹 Fn 𝑇) | |
| 21 | fvelrnb 6877 | . . . . . . . . . . . . 13 ⊢ (𝐹 Fn 𝑇 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑠 ∈ 𝑇 (𝐹‘𝑠) = 𝑦)) | |
| 22 | 8, 20, 21 | 3syl 18 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑠 ∈ 𝑇 (𝐹‘𝑠) = 𝑦)) |
| 23 | 22 | biimpa 476 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → ∃𝑠 ∈ 𝑇 (𝐹‘𝑠) = 𝑦) |
| 24 | df-rex 3055 | . . . . . . . . . . 11 ⊢ (∃𝑠 ∈ 𝑇 (𝐹‘𝑠) = 𝑦 ↔ ∃𝑠(𝑠 ∈ 𝑇 ∧ (𝐹‘𝑠) = 𝑦)) | |
| 25 | 23, 24 | sylib 218 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑦 ∈ ran 𝐹) → ∃𝑠(𝑠 ∈ 𝑇 ∧ (𝐹‘𝑠) = 𝑦)) |
| 26 | 25 | adantlr 715 | . . . . . . . . 9 ⊢ (((𝜑 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥)) ∧ 𝑦 ∈ ran 𝐹) → ∃𝑠(𝑠 ∈ 𝑇 ∧ (𝐹‘𝑠) = 𝑦)) |
| 27 | simprr 772 | . . . . . . . . . 10 ⊢ ((((𝜑 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥)) ∧ 𝑦 ∈ ran 𝐹) ∧ (𝑠 ∈ 𝑇 ∧ (𝐹‘𝑠) = 𝑦)) → (𝐹‘𝑠) = 𝑦) | |
| 28 | simpllr 775 | . . . . . . . . . . 11 ⊢ ((((𝜑 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥)) ∧ 𝑦 ∈ ran 𝐹) ∧ (𝑠 ∈ 𝑇 ∧ (𝐹‘𝑠) = 𝑦)) → ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥)) | |
| 29 | simprl 770 | . . . . . . . . . . 11 ⊢ ((((𝜑 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥)) ∧ 𝑦 ∈ ran 𝐹) ∧ (𝑠 ∈ 𝑇 ∧ (𝐹‘𝑠) = 𝑦)) → 𝑠 ∈ 𝑇) | |
| 30 | fveq2 6817 | . . . . . . . . . . . . 13 ⊢ (𝑡 = 𝑠 → (𝐹‘𝑡) = (𝐹‘𝑠)) | |
| 31 | 30 | breq1d 5099 | . . . . . . . . . . . 12 ⊢ (𝑡 = 𝑠 → ((𝐹‘𝑡) ≤ (𝐹‘𝑥) ↔ (𝐹‘𝑠) ≤ (𝐹‘𝑥))) |
| 32 | 31 | rspccva 3574 | . . . . . . . . . . 11 ⊢ ((∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥) ∧ 𝑠 ∈ 𝑇) → (𝐹‘𝑠) ≤ (𝐹‘𝑥)) |
| 33 | 28, 29, 32 | syl2anc 584 | . . . . . . . . . 10 ⊢ ((((𝜑 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥)) ∧ 𝑦 ∈ ran 𝐹) ∧ (𝑠 ∈ 𝑇 ∧ (𝐹‘𝑠) = 𝑦)) → (𝐹‘𝑠) ≤ (𝐹‘𝑥)) |
| 34 | 27, 33 | eqbrtrrd 5113 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥)) ∧ 𝑦 ∈ ran 𝐹) ∧ (𝑠 ∈ 𝑇 ∧ (𝐹‘𝑠) = 𝑦)) → 𝑦 ≤ (𝐹‘𝑥)) |
| 35 | 26, 34 | exlimddv 1936 | . . . . . . . 8 ⊢ (((𝜑 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥)) ∧ 𝑦 ∈ ran 𝐹) → 𝑦 ≤ (𝐹‘𝑥)) |
| 36 | 35 | ralrimiva 3122 | . . . . . . 7 ⊢ ((𝜑 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥)) → ∀𝑦 ∈ ran 𝐹 𝑦 ≤ (𝐹‘𝑥)) |
| 37 | 36 | adantrl 716 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥))) → ∀𝑦 ∈ ran 𝐹 𝑦 ≤ (𝐹‘𝑥)) |
| 38 | ubelsupr 45036 | . . . . . 6 ⊢ ((ran 𝐹 ⊆ ℝ ∧ (𝐹‘𝑥) ∈ ran 𝐹 ∧ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ (𝐹‘𝑥)) → (𝐹‘𝑥) = sup(ran 𝐹, ℝ, < )) | |
| 39 | 10, 19, 37, 38 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥))) → (𝐹‘𝑥) = sup(ran 𝐹, ℝ, < )) |
| 40 | 39 | eqcomd 2736 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥))) → sup(ran 𝐹, ℝ, < ) = (𝐹‘𝑥)) |
| 41 | 40, 19 | eqeltrd 2829 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥))) → sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹) |
| 42 | 10, 41 | sseldd 3933 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥))) → sup(ran 𝐹, ℝ, < ) ∈ ℝ) |
| 43 | simplrr 777 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥))) ∧ 𝑠 ∈ 𝑇) → ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥)) | |
| 44 | 43, 32 | sylancom 588 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥))) ∧ 𝑠 ∈ 𝑇) → (𝐹‘𝑠) ≤ (𝐹‘𝑥)) |
| 45 | 40 | adantr 480 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥))) ∧ 𝑠 ∈ 𝑇) → sup(ran 𝐹, ℝ, < ) = (𝐹‘𝑥)) |
| 46 | 44, 45 | breqtrrd 5117 | . . . . 5 ⊢ (((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥))) ∧ 𝑠 ∈ 𝑇) → (𝐹‘𝑠) ≤ sup(ran 𝐹, ℝ, < )) |
| 47 | 46 | ralrimiva 3122 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥))) → ∀𝑠 ∈ 𝑇 (𝐹‘𝑠) ≤ sup(ran 𝐹, ℝ, < )) |
| 48 | 30 | breq1d 5099 | . . . . 5 ⊢ (𝑡 = 𝑠 → ((𝐹‘𝑡) ≤ sup(ran 𝐹, ℝ, < ) ↔ (𝐹‘𝑠) ≤ sup(ran 𝐹, ℝ, < ))) |
| 49 | 48 | cbvralvw 3208 | . . . 4 ⊢ (∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ sup(ran 𝐹, ℝ, < ) ↔ ∀𝑠 ∈ 𝑇 (𝐹‘𝑠) ≤ sup(ran 𝐹, ℝ, < )) |
| 50 | 47, 49 | sylibr 234 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥))) → ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ sup(ran 𝐹, ℝ, < )) |
| 51 | 41, 42, 50 | 3jca 1128 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑇 ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ (𝐹‘𝑥))) → (sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ∧ sup(ran 𝐹, ℝ, < ) ∈ ℝ ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ sup(ran 𝐹, ℝ, < ))) |
| 52 | 6, 51 | rexlimddv 3137 | 1 ⊢ (𝜑 → (sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ∧ sup(ran 𝐹, ℝ, < ) ∈ ℝ ∧ ∀𝑡 ∈ 𝑇 (𝐹‘𝑡) ≤ sup(ran 𝐹, ℝ, < ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∃wex 1780 ∈ wcel 2110 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 ⊆ wss 3900 ∅c0 4281 ∪ cuni 4857 class class class wbr 5089 dom cdm 5614 ran crn 5615 Fun wfun 6471 Fn wfn 6472 ⟶wf 6473 ‘cfv 6477 (class class class)co 7341 supcsup 9319 ℝcr 10997 < clt 11138 ≤ cle 11139 (,)cioo 13237 topGenctg 17333 Cn ccn 23132 Compccmp 23294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-fi 9290 df-sup 9321 df-inf 9322 df-oi 9391 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-z 12461 df-dec 12581 df-uz 12725 df-q 12839 df-rp 12883 df-xneg 13003 df-xadd 13004 df-xmul 13005 df-ioo 13241 df-icc 13244 df-fz 13400 df-fzo 13547 df-seq 13901 df-exp 13961 df-hash 14230 df-cj 14998 df-re 14999 df-im 15000 df-sqrt 15134 df-abs 15135 df-struct 17050 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulr 17167 df-starv 17168 df-sca 17169 df-vsca 17170 df-ip 17171 df-tset 17172 df-ple 17173 df-ds 17175 df-unif 17176 df-hom 17177 df-cco 17178 df-rest 17318 df-topn 17319 df-0g 17337 df-gsum 17338 df-topgen 17339 df-pt 17340 df-prds 17343 df-xrs 17398 df-qtop 17403 df-imas 17404 df-xps 17406 df-mre 17480 df-mrc 17481 df-acs 17483 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-submnd 18684 df-mulg 18973 df-cntz 19222 df-cmn 19687 df-psmet 21276 df-xmet 21277 df-met 21278 df-bl 21279 df-mopn 21280 df-cnfld 21285 df-top 22802 df-topon 22819 df-topsp 22841 df-bases 22854 df-cn 23135 df-cnp 23136 df-cmp 23295 df-tx 23470 df-hmeo 23663 df-xms 24228 df-ms 24229 df-tms 24230 |
| This theorem is referenced by: stoweidlem36 46053 |
| Copyright terms: Public domain | W3C validator |