Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncmpmax Structured version   Visualization version   GIF version

Theorem cncmpmax 40124
Description: When the hypothesis for the extreme value theorem hold, then the sup of the range of the function belongs to the range, it is real and it an upper bound of the range. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
cncmpmax.1 𝑇 = 𝐽
cncmpmax.2 𝐾 = (topGen‘ran (,))
cncmpmax.3 (𝜑𝐽 ∈ Comp)
cncmpmax.4 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
cncmpmax.5 (𝜑𝑇 ≠ ∅)
Assertion
Ref Expression
cncmpmax (𝜑 → (sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ∧ sup(ran 𝐹, ℝ, < ) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ sup(ran 𝐹, ℝ, < )))
Distinct variable groups:   𝑡,𝐹   𝑡,𝑇   𝜑,𝑡   𝑡,𝐽   𝑡,𝐾

Proof of Theorem cncmpmax
Dummy variables 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cncmpmax.1 . . 3 𝑇 = 𝐽
2 cncmpmax.2 . . 3 𝐾 = (topGen‘ran (,))
3 cncmpmax.3 . . 3 (𝜑𝐽 ∈ Comp)
4 cncmpmax.4 . . 3 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
5 cncmpmax.5 . . 3 (𝜑𝑇 ≠ ∅)
61, 2, 3, 4, 5evth 23166 . 2 (𝜑 → ∃𝑥𝑇𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))
7 eqid 2778 . . . . . . . . 9 (𝐽 Cn 𝐾) = (𝐽 Cn 𝐾)
82, 1, 7, 4fcnre 40117 . . . . . . . 8 (𝜑𝐹:𝑇⟶ℝ)
98frnd 6298 . . . . . . 7 (𝜑 → ran 𝐹 ⊆ ℝ)
109adantr 474 . . . . . 6 ((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) → ran 𝐹 ⊆ ℝ)
118ffund 6295 . . . . . . . . 9 (𝜑 → Fun 𝐹)
1211adantr 474 . . . . . . . 8 ((𝜑𝑥𝑇) → Fun 𝐹)
13 simpr 479 . . . . . . . . 9 ((𝜑𝑥𝑇) → 𝑥𝑇)
148adantr 474 . . . . . . . . . 10 ((𝜑𝑥𝑇) → 𝐹:𝑇⟶ℝ)
1514fdmd 6300 . . . . . . . . 9 ((𝜑𝑥𝑇) → dom 𝐹 = 𝑇)
1613, 15eleqtrrd 2862 . . . . . . . 8 ((𝜑𝑥𝑇) → 𝑥 ∈ dom 𝐹)
17 fvelrn 6616 . . . . . . . 8 ((Fun 𝐹𝑥 ∈ dom 𝐹) → (𝐹𝑥) ∈ ran 𝐹)
1812, 16, 17syl2anc 579 . . . . . . 7 ((𝜑𝑥𝑇) → (𝐹𝑥) ∈ ran 𝐹)
1918adantrr 707 . . . . . 6 ((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) → (𝐹𝑥) ∈ ran 𝐹)
20 ffn 6291 . . . . . . . . . . . . 13 (𝐹:𝑇⟶ℝ → 𝐹 Fn 𝑇)
21 fvelrnb 6503 . . . . . . . . . . . . 13 (𝐹 Fn 𝑇 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑠𝑇 (𝐹𝑠) = 𝑦))
228, 20, 213syl 18 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ ran 𝐹 ↔ ∃𝑠𝑇 (𝐹𝑠) = 𝑦))
2322biimpa 470 . . . . . . . . . . 11 ((𝜑𝑦 ∈ ran 𝐹) → ∃𝑠𝑇 (𝐹𝑠) = 𝑦)
24 df-rex 3096 . . . . . . . . . . 11 (∃𝑠𝑇 (𝐹𝑠) = 𝑦 ↔ ∃𝑠(𝑠𝑇 ∧ (𝐹𝑠) = 𝑦))
2523, 24sylib 210 . . . . . . . . . 10 ((𝜑𝑦 ∈ ran 𝐹) → ∃𝑠(𝑠𝑇 ∧ (𝐹𝑠) = 𝑦))
2625adantlr 705 . . . . . . . . 9 (((𝜑 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥)) ∧ 𝑦 ∈ ran 𝐹) → ∃𝑠(𝑠𝑇 ∧ (𝐹𝑠) = 𝑦))
27 simprr 763 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥)) ∧ 𝑦 ∈ ran 𝐹) ∧ (𝑠𝑇 ∧ (𝐹𝑠) = 𝑦)) → (𝐹𝑠) = 𝑦)
28 simpllr 766 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥)) ∧ 𝑦 ∈ ran 𝐹) ∧ (𝑠𝑇 ∧ (𝐹𝑠) = 𝑦)) → ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))
29 simprl 761 . . . . . . . . . . 11 ((((𝜑 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥)) ∧ 𝑦 ∈ ran 𝐹) ∧ (𝑠𝑇 ∧ (𝐹𝑠) = 𝑦)) → 𝑠𝑇)
30 fveq2 6446 . . . . . . . . . . . . 13 (𝑡 = 𝑠 → (𝐹𝑡) = (𝐹𝑠))
3130breq1d 4896 . . . . . . . . . . . 12 (𝑡 = 𝑠 → ((𝐹𝑡) ≤ (𝐹𝑥) ↔ (𝐹𝑠) ≤ (𝐹𝑥)))
3231rspccva 3510 . . . . . . . . . . 11 ((∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥) ∧ 𝑠𝑇) → (𝐹𝑠) ≤ (𝐹𝑥))
3328, 29, 32syl2anc 579 . . . . . . . . . 10 ((((𝜑 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥)) ∧ 𝑦 ∈ ran 𝐹) ∧ (𝑠𝑇 ∧ (𝐹𝑠) = 𝑦)) → (𝐹𝑠) ≤ (𝐹𝑥))
3427, 33eqbrtrrd 4910 . . . . . . . . 9 ((((𝜑 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥)) ∧ 𝑦 ∈ ran 𝐹) ∧ (𝑠𝑇 ∧ (𝐹𝑠) = 𝑦)) → 𝑦 ≤ (𝐹𝑥))
3526, 34exlimddv 1978 . . . . . . . 8 (((𝜑 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥)) ∧ 𝑦 ∈ ran 𝐹) → 𝑦 ≤ (𝐹𝑥))
3635ralrimiva 3148 . . . . . . 7 ((𝜑 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥)) → ∀𝑦 ∈ ran 𝐹 𝑦 ≤ (𝐹𝑥))
3736adantrl 706 . . . . . 6 ((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) → ∀𝑦 ∈ ran 𝐹 𝑦 ≤ (𝐹𝑥))
38 ubelsupr 40112 . . . . . 6 ((ran 𝐹 ⊆ ℝ ∧ (𝐹𝑥) ∈ ran 𝐹 ∧ ∀𝑦 ∈ ran 𝐹 𝑦 ≤ (𝐹𝑥)) → (𝐹𝑥) = sup(ran 𝐹, ℝ, < ))
3910, 19, 37, 38syl3anc 1439 . . . . 5 ((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) → (𝐹𝑥) = sup(ran 𝐹, ℝ, < ))
4039eqcomd 2784 . . . 4 ((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) → sup(ran 𝐹, ℝ, < ) = (𝐹𝑥))
4140, 19eqeltrd 2859 . . 3 ((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) → sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹)
4210, 41sseldd 3822 . . 3 ((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) → sup(ran 𝐹, ℝ, < ) ∈ ℝ)
43 simplrr 768 . . . . . . 7 (((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) ∧ 𝑠𝑇) → ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))
4443, 32sylancom 582 . . . . . 6 (((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) ∧ 𝑠𝑇) → (𝐹𝑠) ≤ (𝐹𝑥))
4540adantr 474 . . . . . 6 (((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) ∧ 𝑠𝑇) → sup(ran 𝐹, ℝ, < ) = (𝐹𝑥))
4644, 45breqtrrd 4914 . . . . 5 (((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) ∧ 𝑠𝑇) → (𝐹𝑠) ≤ sup(ran 𝐹, ℝ, < ))
4746ralrimiva 3148 . . . 4 ((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) → ∀𝑠𝑇 (𝐹𝑠) ≤ sup(ran 𝐹, ℝ, < ))
4830breq1d 4896 . . . . 5 (𝑡 = 𝑠 → ((𝐹𝑡) ≤ sup(ran 𝐹, ℝ, < ) ↔ (𝐹𝑠) ≤ sup(ran 𝐹, ℝ, < )))
4948cbvralv 3367 . . . 4 (∀𝑡𝑇 (𝐹𝑡) ≤ sup(ran 𝐹, ℝ, < ) ↔ ∀𝑠𝑇 (𝐹𝑠) ≤ sup(ran 𝐹, ℝ, < ))
5047, 49sylibr 226 . . 3 ((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) → ∀𝑡𝑇 (𝐹𝑡) ≤ sup(ran 𝐹, ℝ, < ))
5141, 42, 503jca 1119 . 2 ((𝜑 ∧ (𝑥𝑇 ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ (𝐹𝑥))) → (sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ∧ sup(ran 𝐹, ℝ, < ) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ sup(ran 𝐹, ℝ, < )))
526, 51rexlimddv 3218 1 (𝜑 → (sup(ran 𝐹, ℝ, < ) ∈ ran 𝐹 ∧ sup(ran 𝐹, ℝ, < ) ∈ ℝ ∧ ∀𝑡𝑇 (𝐹𝑡) ≤ sup(ran 𝐹, ℝ, < )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1071   = wceq 1601  wex 1823  wcel 2107  wne 2969  wral 3090  wrex 3091  wss 3792  c0 4141   cuni 4671   class class class wbr 4886  dom cdm 5355  ran crn 5356  Fun wfun 6129   Fn wfn 6130  wf 6131  cfv 6135  (class class class)co 6922  supcsup 8634  cr 10271   < clt 10411  cle 10412  (,)cioo 12487  topGenctg 16484   Cn ccn 21436  Compccmp 21598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-mulf 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-map 8142  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-fi 8605  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-ioo 12491  df-icc 12494  df-fz 12644  df-fzo 12785  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-hom 16362  df-cco 16363  df-rest 16469  df-topn 16470  df-0g 16488  df-gsum 16489  df-topgen 16490  df-pt 16491  df-prds 16494  df-xrs 16548  df-qtop 16553  df-imas 16554  df-xps 16556  df-mre 16632  df-mrc 16633  df-acs 16635  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-submnd 17722  df-mulg 17928  df-cntz 18133  df-cmn 18581  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-cnfld 20143  df-top 21106  df-topon 21123  df-topsp 21145  df-bases 21158  df-cn 21439  df-cnp 21440  df-cmp 21599  df-tx 21774  df-hmeo 21967  df-xms 22533  df-ms 22534  df-tms 22535
This theorem is referenced by:  stoweidlem36  41180
  Copyright terms: Public domain W3C validator