![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvdsr1p | Structured version Visualization version GIF version |
Description: Divisibility in a polynomial ring in terms of the remainder. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
Ref | Expression |
---|---|
dvdsq1p.p | ⊢ 𝑃 = (Poly1‘𝑅) |
dvdsq1p.d | ⊢ ∥ = (∥r‘𝑃) |
dvdsq1p.b | ⊢ 𝐵 = (Base‘𝑃) |
dvdsq1p.c | ⊢ 𝐶 = (Unic1p‘𝑅) |
dvdsr1p.z | ⊢ 0 = (0g‘𝑃) |
dvdsr1p.e | ⊢ 𝐸 = (rem1p‘𝑅) |
Ref | Expression |
---|---|
dvdsr1p | ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐺 ∥ 𝐹 ↔ (𝐹𝐸𝐺) = 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdsq1p.p | . . . . . 6 ⊢ 𝑃 = (Poly1‘𝑅) | |
2 | 1 | ply1ring 20109 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
3 | 2 | 3ad2ant1 1113 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝑃 ∈ Ring) |
4 | ringgrp 19015 | . . . 4 ⊢ (𝑃 ∈ Ring → 𝑃 ∈ Grp) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝑃 ∈ Grp) |
6 | simp2 1117 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝐹 ∈ 𝐵) | |
7 | eqid 2772 | . . . . 5 ⊢ (quot1p‘𝑅) = (quot1p‘𝑅) | |
8 | dvdsq1p.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑃) | |
9 | dvdsq1p.c | . . . . 5 ⊢ 𝐶 = (Unic1p‘𝑅) | |
10 | 7, 1, 8, 9 | q1pcl 24442 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐹(quot1p‘𝑅)𝐺) ∈ 𝐵) |
11 | 1, 8, 9 | uc1pcl 24430 | . . . . 5 ⊢ (𝐺 ∈ 𝐶 → 𝐺 ∈ 𝐵) |
12 | 11 | 3ad2ant3 1115 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝐺 ∈ 𝐵) |
13 | eqid 2772 | . . . . 5 ⊢ (.r‘𝑃) = (.r‘𝑃) | |
14 | 8, 13 | ringcl 19024 | . . . 4 ⊢ ((𝑃 ∈ Ring ∧ (𝐹(quot1p‘𝑅)𝐺) ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺) ∈ 𝐵) |
15 | 3, 10, 12, 14 | syl3anc 1351 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺) ∈ 𝐵) |
16 | dvdsr1p.z | . . . 4 ⊢ 0 = (0g‘𝑃) | |
17 | eqid 2772 | . . . 4 ⊢ (-g‘𝑃) = (-g‘𝑃) | |
18 | 8, 16, 17 | grpsubeq0 17962 | . . 3 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ∈ 𝐵 ∧ ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺) ∈ 𝐵) → ((𝐹(-g‘𝑃)((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) = 0 ↔ 𝐹 = ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺))) |
19 | 5, 6, 15, 18 | syl3anc 1351 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ((𝐹(-g‘𝑃)((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) = 0 ↔ 𝐹 = ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺))) |
20 | dvdsr1p.e | . . . . 5 ⊢ 𝐸 = (rem1p‘𝑅) | |
21 | 20, 1, 8, 7, 13, 17 | r1pval 24443 | . . . 4 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹𝐸𝐺) = (𝐹(-g‘𝑃)((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺))) |
22 | 6, 12, 21 | syl2anc 576 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐹𝐸𝐺) = (𝐹(-g‘𝑃)((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺))) |
23 | 22 | eqeq1d 2774 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ((𝐹𝐸𝐺) = 0 ↔ (𝐹(-g‘𝑃)((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) = 0 )) |
24 | dvdsq1p.d | . . 3 ⊢ ∥ = (∥r‘𝑃) | |
25 | 1, 24, 8, 9, 13, 7 | dvdsq1p 24447 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐺 ∥ 𝐹 ↔ 𝐹 = ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺))) |
26 | 19, 23, 25 | 3bitr4rd 304 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐺 ∥ 𝐹 ↔ (𝐹𝐸𝐺) = 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ w3a 1068 = wceq 1507 ∈ wcel 2048 class class class wbr 4923 ‘cfv 6182 (class class class)co 6970 Basecbs 16329 .rcmulr 16412 0gc0g 16559 Grpcgrp 17881 -gcsg 17883 Ringcrg 19010 ∥rcdsr 19101 Poly1cpl1 20038 Unic1pcuc1p 24413 quot1pcq1p 24414 rem1pcr1p 24415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10383 ax-resscn 10384 ax-1cn 10385 ax-icn 10386 ax-addcl 10387 ax-addrcl 10388 ax-mulcl 10389 ax-mulrcl 10390 ax-mulcom 10391 ax-addass 10392 ax-mulass 10393 ax-distr 10394 ax-i2m1 10395 ax-1ne0 10396 ax-1rid 10397 ax-rnegex 10398 ax-rrecex 10399 ax-cnre 10400 ax-pre-lttri 10401 ax-pre-lttrn 10402 ax-pre-ltadd 10403 ax-pre-mulgt0 10404 ax-pre-sup 10405 ax-addf 10406 ax-mulf 10407 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-iin 4789 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-se 5360 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-isom 6191 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-of 7221 df-ofr 7222 df-om 7391 df-1st 7494 df-2nd 7495 df-supp 7627 df-tpos 7688 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-1o 7897 df-2o 7898 df-oadd 7901 df-er 8081 df-map 8200 df-pm 8201 df-ixp 8252 df-en 8299 df-dom 8300 df-sdom 8301 df-fin 8302 df-fsupp 8621 df-sup 8693 df-oi 8761 df-card 9154 df-pnf 10468 df-mnf 10469 df-xr 10470 df-ltxr 10471 df-le 10472 df-sub 10664 df-neg 10665 df-nn 11432 df-2 11496 df-3 11497 df-4 11498 df-5 11499 df-6 11500 df-7 11501 df-8 11502 df-9 11503 df-n0 11701 df-z 11787 df-dec 11905 df-uz 12052 df-fz 12702 df-fzo 12843 df-seq 13178 df-hash 13499 df-struct 16331 df-ndx 16332 df-slot 16333 df-base 16335 df-sets 16336 df-ress 16337 df-plusg 16424 df-mulr 16425 df-starv 16426 df-sca 16427 df-vsca 16428 df-tset 16430 df-ple 16431 df-ds 16433 df-unif 16434 df-0g 16561 df-gsum 16562 df-mre 16705 df-mrc 16706 df-acs 16708 df-mgm 17700 df-sgrp 17742 df-mnd 17753 df-mhm 17793 df-submnd 17794 df-grp 17884 df-minusg 17885 df-sbg 17886 df-mulg 18002 df-subg 18050 df-ghm 18117 df-cntz 18208 df-cmn 18658 df-abl 18659 df-mgp 18953 df-ur 18965 df-ring 19012 df-cring 19013 df-oppr 19086 df-dvdsr 19104 df-unit 19105 df-invr 19135 df-subrg 19246 df-lmod 19348 df-lss 19416 df-rlreg 19767 df-psr 19840 df-mvr 19841 df-mpl 19842 df-opsr 19844 df-psr1 20041 df-vr1 20042 df-ply1 20043 df-coe1 20044 df-cnfld 20238 df-mdeg 24342 df-deg1 24343 df-uc1p 24418 df-q1p 24419 df-r1p 24420 |
This theorem is referenced by: facth1 24451 ig1pdvds 24463 |
Copyright terms: Public domain | W3C validator |