MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1pcl Structured version   Visualization version   GIF version

Theorem r1pcl 26092
Description: Closure of remainder following division by a unitic polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
r1pval.e 𝐸 = (rem1p𝑅)
r1pval.p 𝑃 = (Poly1𝑅)
r1pval.b 𝐵 = (Base‘𝑃)
r1pcl.c 𝐶 = (Unic1p𝑅)
Assertion
Ref Expression
r1pcl ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐹𝐸𝐺) ∈ 𝐵)

Proof of Theorem r1pcl
StepHypRef Expression
1 simp2 1137 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝐹𝐵)
2 r1pval.p . . . . 5 𝑃 = (Poly1𝑅)
3 r1pval.b . . . . 5 𝐵 = (Base‘𝑃)
4 r1pcl.c . . . . 5 𝐶 = (Unic1p𝑅)
52, 3, 4uc1pcl 26077 . . . 4 (𝐺𝐶𝐺𝐵)
653ad2ant3 1135 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝐺𝐵)
7 r1pval.e . . . 4 𝐸 = (rem1p𝑅)
8 eqid 2733 . . . 4 (quot1p𝑅) = (quot1p𝑅)
9 eqid 2733 . . . 4 (.r𝑃) = (.r𝑃)
10 eqid 2733 . . . 4 (-g𝑃) = (-g𝑃)
117, 2, 3, 8, 9, 10r1pval 26091 . . 3 ((𝐹𝐵𝐺𝐵) → (𝐹𝐸𝐺) = (𝐹(-g𝑃)((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)))
121, 6, 11syl2anc 584 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐹𝐸𝐺) = (𝐹(-g𝑃)((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)))
132ply1ring 22161 . . . . 5 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
14133ad2ant1 1133 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝑃 ∈ Ring)
15 ringgrp 20158 . . . 4 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
1614, 15syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝑃 ∈ Grp)
178, 2, 3, 4q1pcl 26090 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐹(quot1p𝑅)𝐺) ∈ 𝐵)
183, 9ringcl 20170 . . . 4 ((𝑃 ∈ Ring ∧ (𝐹(quot1p𝑅)𝐺) ∈ 𝐵𝐺𝐵) → ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) ∈ 𝐵)
1914, 17, 6, 18syl3anc 1373 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) ∈ 𝐵)
203, 10grpsubcl 18935 . . 3 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) ∈ 𝐵) → (𝐹(-g𝑃)((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) ∈ 𝐵)
2116, 1, 19, 20syl3anc 1373 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐹(-g𝑃)((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) ∈ 𝐵)
2212, 21eqeltrd 2833 1 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐹𝐸𝐺) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2113  cfv 6486  (class class class)co 7352  Basecbs 17122  .rcmulr 17164  Grpcgrp 18848  -gcsg 18850  Ringcrg 20153  Poly1cpl1 22090  Unic1pcuc1p 26060  quot1pcq1p 26061  rem1pcr1p 26062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091  ax-addf 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-ofr 7617  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-sup 9333  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-fz 13410  df-fzo 13557  df-seq 13911  df-hash 14240  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-starv 17178  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-unif 17186  df-hom 17187  df-cco 17188  df-0g 17347  df-gsum 17348  df-prds 17353  df-pws 17355  df-mre 17490  df-mrc 17491  df-acs 17493  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-mhm 18693  df-submnd 18694  df-grp 18851  df-minusg 18852  df-sbg 18853  df-mulg 18983  df-subg 19038  df-ghm 19127  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-subrng 20463  df-subrg 20487  df-rlreg 20611  df-lmod 20797  df-lss 20867  df-cnfld 21294  df-psr 21848  df-mvr 21849  df-mpl 21850  df-opsr 21852  df-psr1 22093  df-vr1 22094  df-ply1 22095  df-coe1 22096  df-mdeg 25988  df-deg1 25989  df-uc1p 26065  df-q1p 26066  df-r1p 26067
This theorem is referenced by:  r1pid2  26095  ply1rem  26099  q1pdir  33570  r1p0  33573  r1pid2OLD  33576  r1plmhm  33577  r1pquslmic  33578  irredminply  33750  algextdeglem8  33758
  Copyright terms: Public domain W3C validator