![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r1pcl | Structured version Visualization version GIF version |
Description: Closure of remainder following division by a unitic polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
Ref | Expression |
---|---|
r1pval.e | ⊢ 𝐸 = (rem1p‘𝑅) |
r1pval.p | ⊢ 𝑃 = (Poly1‘𝑅) |
r1pval.b | ⊢ 𝐵 = (Base‘𝑃) |
r1pcl.c | ⊢ 𝐶 = (Unic1p‘𝑅) |
Ref | Expression |
---|---|
r1pcl | ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐹𝐸𝐺) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1130 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝐹 ∈ 𝐵) | |
2 | r1pval.p | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
3 | r1pval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑃) | |
4 | r1pcl.c | . . . . 5 ⊢ 𝐶 = (Unic1p‘𝑅) | |
5 | 2, 3, 4 | uc1pcl 24424 | . . . 4 ⊢ (𝐺 ∈ 𝐶 → 𝐺 ∈ 𝐵) |
6 | 5 | 3ad2ant3 1128 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝐺 ∈ 𝐵) |
7 | r1pval.e | . . . 4 ⊢ 𝐸 = (rem1p‘𝑅) | |
8 | eqid 2797 | . . . 4 ⊢ (quot1p‘𝑅) = (quot1p‘𝑅) | |
9 | eqid 2797 | . . . 4 ⊢ (.r‘𝑃) = (.r‘𝑃) | |
10 | eqid 2797 | . . . 4 ⊢ (-g‘𝑃) = (-g‘𝑃) | |
11 | 7, 2, 3, 8, 9, 10 | r1pval 24437 | . . 3 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹𝐸𝐺) = (𝐹(-g‘𝑃)((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺))) |
12 | 1, 6, 11 | syl2anc 584 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐹𝐸𝐺) = (𝐹(-g‘𝑃)((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺))) |
13 | 2 | ply1ring 20103 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
14 | 13 | 3ad2ant1 1126 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝑃 ∈ Ring) |
15 | ringgrp 18996 | . . . 4 ⊢ (𝑃 ∈ Ring → 𝑃 ∈ Grp) | |
16 | 14, 15 | syl 17 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝑃 ∈ Grp) |
17 | 8, 2, 3, 4 | q1pcl 24436 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐹(quot1p‘𝑅)𝐺) ∈ 𝐵) |
18 | 3, 9 | ringcl 19005 | . . . 4 ⊢ ((𝑃 ∈ Ring ∧ (𝐹(quot1p‘𝑅)𝐺) ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺) ∈ 𝐵) |
19 | 14, 17, 6, 18 | syl3anc 1364 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺) ∈ 𝐵) |
20 | 3, 10 | grpsubcl 17940 | . . 3 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ∈ 𝐵 ∧ ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺) ∈ 𝐵) → (𝐹(-g‘𝑃)((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) ∈ 𝐵) |
21 | 16, 1, 19, 20 | syl3anc 1364 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐹(-g‘𝑃)((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) ∈ 𝐵) |
22 | 12, 21 | eqeltrd 2885 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐹𝐸𝐺) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1080 = wceq 1525 ∈ wcel 2083 ‘cfv 6232 (class class class)co 7023 Basecbs 16316 .rcmulr 16399 Grpcgrp 17865 -gcsg 17867 Ringcrg 18991 Poly1cpl1 20032 Unic1pcuc1p 24407 quot1pcq1p 24408 rem1pcr1p 24409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-rep 5088 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 ax-cnex 10446 ax-resscn 10447 ax-1cn 10448 ax-icn 10449 ax-addcl 10450 ax-addrcl 10451 ax-mulcl 10452 ax-mulrcl 10453 ax-mulcom 10454 ax-addass 10455 ax-mulass 10456 ax-distr 10457 ax-i2m1 10458 ax-1ne0 10459 ax-1rid 10460 ax-rnegex 10461 ax-rrecex 10462 ax-cnre 10463 ax-pre-lttri 10464 ax-pre-lttrn 10465 ax-pre-ltadd 10466 ax-pre-mulgt0 10467 ax-pre-sup 10468 ax-addf 10469 ax-mulf 10470 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-nel 3093 df-ral 3112 df-rex 3113 df-reu 3114 df-rmo 3115 df-rab 3116 df-v 3442 df-sbc 3712 df-csb 3818 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-int 4789 df-iun 4833 df-iin 4834 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-se 5410 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-pred 6030 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-isom 6241 df-riota 6984 df-ov 7026 df-oprab 7027 df-mpo 7028 df-of 7274 df-ofr 7275 df-om 7444 df-1st 7552 df-2nd 7553 df-supp 7689 df-tpos 7750 df-wrecs 7805 df-recs 7867 df-rdg 7905 df-1o 7960 df-2o 7961 df-oadd 7964 df-er 8146 df-map 8265 df-pm 8266 df-ixp 8318 df-en 8365 df-dom 8366 df-sdom 8367 df-fin 8368 df-fsupp 8687 df-sup 8759 df-oi 8827 df-card 9221 df-pnf 10530 df-mnf 10531 df-xr 10532 df-ltxr 10533 df-le 10534 df-sub 10725 df-neg 10726 df-nn 11493 df-2 11554 df-3 11555 df-4 11556 df-5 11557 df-6 11558 df-7 11559 df-8 11560 df-9 11561 df-n0 11752 df-z 11836 df-dec 11953 df-uz 12098 df-fz 12747 df-fzo 12888 df-seq 13224 df-hash 13545 df-struct 16318 df-ndx 16319 df-slot 16320 df-base 16322 df-sets 16323 df-ress 16324 df-plusg 16411 df-mulr 16412 df-starv 16413 df-sca 16414 df-vsca 16415 df-tset 16417 df-ple 16418 df-ds 16420 df-unif 16421 df-0g 16548 df-gsum 16549 df-mre 16690 df-mrc 16691 df-acs 16693 df-mgm 17685 df-sgrp 17727 df-mnd 17738 df-mhm 17778 df-submnd 17779 df-grp 17868 df-minusg 17869 df-sbg 17870 df-mulg 17986 df-subg 18034 df-ghm 18101 df-cntz 18192 df-cmn 18639 df-abl 18640 df-mgp 18934 df-ur 18946 df-ring 18993 df-cring 18994 df-oppr 19067 df-dvdsr 19085 df-unit 19086 df-invr 19116 df-subrg 19227 df-lmod 19330 df-lss 19398 df-rlreg 19749 df-psr 19828 df-mvr 19829 df-mpl 19830 df-opsr 19832 df-psr1 20035 df-vr1 20036 df-ply1 20037 df-coe1 20038 df-cnfld 20232 df-mdeg 24336 df-deg1 24337 df-uc1p 24412 df-q1p 24413 df-r1p 24414 |
This theorem is referenced by: ply1rem 24444 |
Copyright terms: Public domain | W3C validator |