MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1pcl Structured version   Visualization version   GIF version

Theorem r1pcl 25405
Description: Closure of remainder following division by a unitic polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
r1pval.e 𝐸 = (rem1p𝑅)
r1pval.p 𝑃 = (Poly1𝑅)
r1pval.b 𝐵 = (Base‘𝑃)
r1pcl.c 𝐶 = (Unic1p𝑅)
Assertion
Ref Expression
r1pcl ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐹𝐸𝐺) ∈ 𝐵)

Proof of Theorem r1pcl
StepHypRef Expression
1 simp2 1136 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝐹𝐵)
2 r1pval.p . . . . 5 𝑃 = (Poly1𝑅)
3 r1pval.b . . . . 5 𝐵 = (Base‘𝑃)
4 r1pcl.c . . . . 5 𝐶 = (Unic1p𝑅)
52, 3, 4uc1pcl 25391 . . . 4 (𝐺𝐶𝐺𝐵)
653ad2ant3 1134 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝐺𝐵)
7 r1pval.e . . . 4 𝐸 = (rem1p𝑅)
8 eqid 2737 . . . 4 (quot1p𝑅) = (quot1p𝑅)
9 eqid 2737 . . . 4 (.r𝑃) = (.r𝑃)
10 eqid 2737 . . . 4 (-g𝑃) = (-g𝑃)
117, 2, 3, 8, 9, 10r1pval 25404 . . 3 ((𝐹𝐵𝐺𝐵) → (𝐹𝐸𝐺) = (𝐹(-g𝑃)((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)))
121, 6, 11syl2anc 584 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐹𝐸𝐺) = (𝐹(-g𝑃)((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)))
132ply1ring 21502 . . . . 5 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
14133ad2ant1 1132 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝑃 ∈ Ring)
15 ringgrp 19863 . . . 4 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
1614, 15syl 17 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝑃 ∈ Grp)
178, 2, 3, 4q1pcl 25403 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐹(quot1p𝑅)𝐺) ∈ 𝐵)
183, 9ringcl 19875 . . . 4 ((𝑃 ∈ Ring ∧ (𝐹(quot1p𝑅)𝐺) ∈ 𝐵𝐺𝐵) → ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) ∈ 𝐵)
1914, 17, 6, 18syl3anc 1370 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) ∈ 𝐵)
203, 10grpsubcl 18731 . . 3 ((𝑃 ∈ Grp ∧ 𝐹𝐵 ∧ ((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺) ∈ 𝐵) → (𝐹(-g𝑃)((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) ∈ 𝐵)
2116, 1, 19, 20syl3anc 1370 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐹(-g𝑃)((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)) ∈ 𝐵)
2212, 21eqeltrd 2838 1 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐹𝐸𝐺) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2105  cfv 6466  (class class class)co 7317  Basecbs 16989  .rcmulr 17040  Grpcgrp 18653  -gcsg 18655  Ringcrg 19858  Poly1cpl1 21431  Unic1pcuc1p 25374  quot1pcq1p 25375  rem1pcr1p 25376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7630  ax-cnex 11007  ax-resscn 11008  ax-1cn 11009  ax-icn 11010  ax-addcl 11011  ax-addrcl 11012  ax-mulcl 11013  ax-mulrcl 11014  ax-mulcom 11015  ax-addass 11016  ax-mulass 11017  ax-distr 11018  ax-i2m1 11019  ax-1ne0 11020  ax-1rid 11021  ax-rnegex 11022  ax-rrecex 11023  ax-cnre 11024  ax-pre-lttri 11025  ax-pre-lttrn 11026  ax-pre-ltadd 11027  ax-pre-mulgt0 11028  ax-pre-sup 11029  ax-addf 11030  ax-mulf 11031
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4851  df-int 4893  df-iun 4939  df-iin 4940  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5563  df-se 5564  df-we 5565  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621  df-pred 6225  df-ord 6292  df-on 6293  df-lim 6294  df-suc 6295  df-iota 6418  df-fun 6468  df-fn 6469  df-f 6470  df-f1 6471  df-fo 6472  df-f1o 6473  df-fv 6474  df-isom 6475  df-riota 7274  df-ov 7320  df-oprab 7321  df-mpo 7322  df-of 7575  df-ofr 7576  df-om 7760  df-1st 7878  df-2nd 7879  df-supp 8027  df-tpos 8091  df-frecs 8146  df-wrecs 8177  df-recs 8251  df-rdg 8290  df-1o 8346  df-er 8548  df-map 8667  df-pm 8668  df-ixp 8736  df-en 8784  df-dom 8785  df-sdom 8786  df-fin 8787  df-fsupp 9206  df-sup 9278  df-oi 9346  df-card 9775  df-pnf 11091  df-mnf 11092  df-xr 11093  df-ltxr 11094  df-le 11095  df-sub 11287  df-neg 11288  df-nn 12054  df-2 12116  df-3 12117  df-4 12118  df-5 12119  df-6 12120  df-7 12121  df-8 12122  df-9 12123  df-n0 12314  df-z 12400  df-dec 12518  df-uz 12663  df-fz 13320  df-fzo 13463  df-seq 13802  df-hash 14125  df-struct 16925  df-sets 16942  df-slot 16960  df-ndx 16972  df-base 16990  df-ress 17019  df-plusg 17052  df-mulr 17053  df-starv 17054  df-sca 17055  df-vsca 17056  df-tset 17058  df-ple 17059  df-ds 17061  df-unif 17062  df-0g 17229  df-gsum 17230  df-mre 17372  df-mrc 17373  df-acs 17375  df-mgm 18403  df-sgrp 18452  df-mnd 18463  df-mhm 18507  df-submnd 18508  df-grp 18656  df-minusg 18657  df-sbg 18658  df-mulg 18777  df-subg 18828  df-ghm 18908  df-cntz 18999  df-cmn 19463  df-abl 19464  df-mgp 19796  df-ur 19813  df-ring 19860  df-cring 19861  df-oppr 19937  df-dvdsr 19958  df-unit 19959  df-invr 19989  df-subrg 20104  df-lmod 20208  df-lss 20277  df-rlreg 20637  df-cnfld 20681  df-psr 21195  df-mvr 21196  df-mpl 21197  df-opsr 21199  df-psr1 21434  df-vr1 21435  df-ply1 21436  df-coe1 21437  df-mdeg 25300  df-deg1 25301  df-uc1p 25379  df-q1p 25380  df-r1p 25381
This theorem is referenced by:  ply1rem  25411
  Copyright terms: Public domain W3C validator