| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r1pcl | Structured version Visualization version GIF version | ||
| Description: Closure of remainder following division by a unitic polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| Ref | Expression |
|---|---|
| r1pval.e | ⊢ 𝐸 = (rem1p‘𝑅) |
| r1pval.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| r1pval.b | ⊢ 𝐵 = (Base‘𝑃) |
| r1pcl.c | ⊢ 𝐶 = (Unic1p‘𝑅) |
| Ref | Expression |
|---|---|
| r1pcl | ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐹𝐸𝐺) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1134 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝐹 ∈ 𝐵) | |
| 2 | r1pval.p | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 3 | r1pval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑃) | |
| 4 | r1pcl.c | . . . . 5 ⊢ 𝐶 = (Unic1p‘𝑅) | |
| 5 | 2, 3, 4 | uc1pcl 26194 | . . . 4 ⊢ (𝐺 ∈ 𝐶 → 𝐺 ∈ 𝐵) |
| 6 | 5 | 3ad2ant3 1132 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝐺 ∈ 𝐵) |
| 7 | r1pval.e | . . . 4 ⊢ 𝐸 = (rem1p‘𝑅) | |
| 8 | eqid 2729 | . . . 4 ⊢ (quot1p‘𝑅) = (quot1p‘𝑅) | |
| 9 | eqid 2729 | . . . 4 ⊢ (.r‘𝑃) = (.r‘𝑃) | |
| 10 | eqid 2729 | . . . 4 ⊢ (-g‘𝑃) = (-g‘𝑃) | |
| 11 | 7, 2, 3, 8, 9, 10 | r1pval 26208 | . . 3 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹𝐸𝐺) = (𝐹(-g‘𝑃)((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺))) |
| 12 | 1, 6, 11 | syl2anc 582 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐹𝐸𝐺) = (𝐹(-g‘𝑃)((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺))) |
| 13 | 2 | ply1ring 22259 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 14 | 13 | 3ad2ant1 1130 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝑃 ∈ Ring) |
| 15 | ringgrp 20243 | . . . 4 ⊢ (𝑃 ∈ Ring → 𝑃 ∈ Grp) | |
| 16 | 14, 15 | syl 17 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝑃 ∈ Grp) |
| 17 | 8, 2, 3, 4 | q1pcl 26207 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐹(quot1p‘𝑅)𝐺) ∈ 𝐵) |
| 18 | 3, 9 | ringcl 20255 | . . . 4 ⊢ ((𝑃 ∈ Ring ∧ (𝐹(quot1p‘𝑅)𝐺) ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺) ∈ 𝐵) |
| 19 | 14, 17, 6, 18 | syl3anc 1368 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺) ∈ 𝐵) |
| 20 | 3, 10 | grpsubcl 19036 | . . 3 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ∈ 𝐵 ∧ ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺) ∈ 𝐵) → (𝐹(-g‘𝑃)((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) ∈ 𝐵) |
| 21 | 16, 1, 19, 20 | syl3anc 1368 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐹(-g‘𝑃)((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) ∈ 𝐵) |
| 22 | 12, 21 | eqeltrd 2829 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐹𝐸𝐺) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1084 = wceq 1534 ∈ wcel 2100 ‘cfv 6556 (class class class)co 7428 Basecbs 17234 .rcmulr 17288 Grpcgrp 18949 -gcsg 18951 Ringcrg 20238 Poly1cpl1 22188 Unic1pcuc1p 26177 quot1pcq1p 26178 rem1pcr1p 26179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2102 ax-9 2110 ax-10 2133 ax-11 2150 ax-12 2170 ax-ext 2700 ax-rep 5291 ax-sep 5305 ax-nul 5312 ax-pow 5371 ax-pr 5435 ax-un 7749 ax-cnex 11221 ax-resscn 11222 ax-1cn 11223 ax-icn 11224 ax-addcl 11225 ax-addrcl 11226 ax-mulcl 11227 ax-mulrcl 11228 ax-mulcom 11229 ax-addass 11230 ax-mulass 11231 ax-distr 11232 ax-i2m1 11233 ax-1ne0 11234 ax-1rid 11235 ax-rnegex 11236 ax-rrecex 11237 ax-cnre 11238 ax-pre-lttri 11239 ax-pre-lttrn 11240 ax-pre-ltadd 11241 ax-pre-mulgt0 11242 ax-pre-sup 11243 ax-addf 11244 |
| This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2062 df-mo 2532 df-eu 2561 df-clab 2707 df-cleq 2721 df-clel 2806 df-nfc 2881 df-ne 2934 df-nel 3040 df-ral 3055 df-rex 3064 df-rmo 3373 df-reu 3374 df-rab 3429 df-v 3474 df-sbc 3787 df-csb 3903 df-dif 3960 df-un 3962 df-in 3964 df-ss 3974 df-pss 3977 df-nul 4334 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-tp 4639 df-op 4641 df-uni 4917 df-int 4958 df-iun 5006 df-iin 5007 df-br 5155 df-opab 5217 df-mpt 5238 df-tr 5272 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5639 df-se 5640 df-we 5641 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6315 df-ord 6381 df-on 6382 df-lim 6383 df-suc 6384 df-iota 6508 df-fun 6558 df-fn 6559 df-f 6560 df-f1 6561 df-fo 6562 df-f1o 6563 df-fv 6564 df-isom 6565 df-riota 7384 df-ov 7431 df-oprab 7432 df-mpo 7433 df-of 7693 df-ofr 7694 df-om 7883 df-1st 8009 df-2nd 8010 df-supp 8181 df-tpos 8247 df-frecs 8302 df-wrecs 8333 df-recs 8407 df-rdg 8446 df-1o 8502 df-2o 8503 df-er 8740 df-map 8863 df-pm 8864 df-ixp 8933 df-en 8981 df-dom 8982 df-sdom 8983 df-fin 8984 df-fsupp 9413 df-sup 9492 df-oi 9560 df-card 9989 df-pnf 11307 df-mnf 11308 df-xr 11309 df-ltxr 11310 df-le 11311 df-sub 11503 df-neg 11504 df-nn 12275 df-2 12337 df-3 12338 df-4 12339 df-5 12340 df-6 12341 df-7 12342 df-8 12343 df-9 12344 df-n0 12535 df-z 12621 df-dec 12740 df-uz 12885 df-fz 13549 df-fzo 13692 df-seq 14033 df-hash 14360 df-struct 17170 df-sets 17187 df-slot 17205 df-ndx 17217 df-base 17235 df-ress 17264 df-plusg 17300 df-mulr 17301 df-starv 17302 df-sca 17303 df-vsca 17304 df-ip 17305 df-tset 17306 df-ple 17307 df-ds 17309 df-unif 17310 df-hom 17311 df-cco 17312 df-0g 17477 df-gsum 17478 df-prds 17483 df-pws 17485 df-mre 17620 df-mrc 17621 df-acs 17623 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-mhm 18794 df-submnd 18795 df-grp 18952 df-minusg 18953 df-sbg 18954 df-mulg 19084 df-subg 19139 df-ghm 19229 df-cntz 19333 df-cmn 19802 df-abl 19803 df-mgp 20140 df-rng 20158 df-ur 20187 df-ring 20240 df-cring 20241 df-oppr 20338 df-dvdsr 20361 df-unit 20362 df-invr 20392 df-subrng 20550 df-subrg 20575 df-rlreg 20694 df-lmod 20860 df-lss 20931 df-cnfld 21366 df-psr 21928 df-mvr 21929 df-mpl 21930 df-opsr 21932 df-psr1 22191 df-vr1 22192 df-ply1 22193 df-coe1 22194 df-mdeg 26102 df-deg1 26103 df-uc1p 26182 df-q1p 26183 df-r1p 26184 |
| This theorem is referenced by: r1pid2 26212 ply1rem 26216 q1pdir 33501 r1p0 33504 r1pid2OLD 33507 r1plmhm 33508 r1pquslmic 33509 irredminply 33614 algextdeglem8 33622 |
| Copyright terms: Public domain | W3C validator |