Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r1pcl | Structured version Visualization version GIF version |
Description: Closure of remainder following division by a unitic polynomial. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
Ref | Expression |
---|---|
r1pval.e | ⊢ 𝐸 = (rem1p‘𝑅) |
r1pval.p | ⊢ 𝑃 = (Poly1‘𝑅) |
r1pval.b | ⊢ 𝐵 = (Base‘𝑃) |
r1pcl.c | ⊢ 𝐶 = (Unic1p‘𝑅) |
Ref | Expression |
---|---|
r1pcl | ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐹𝐸𝐺) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1136 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝐹 ∈ 𝐵) | |
2 | r1pval.p | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
3 | r1pval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑃) | |
4 | r1pcl.c | . . . . 5 ⊢ 𝐶 = (Unic1p‘𝑅) | |
5 | 2, 3, 4 | uc1pcl 25391 | . . . 4 ⊢ (𝐺 ∈ 𝐶 → 𝐺 ∈ 𝐵) |
6 | 5 | 3ad2ant3 1134 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝐺 ∈ 𝐵) |
7 | r1pval.e | . . . 4 ⊢ 𝐸 = (rem1p‘𝑅) | |
8 | eqid 2737 | . . . 4 ⊢ (quot1p‘𝑅) = (quot1p‘𝑅) | |
9 | eqid 2737 | . . . 4 ⊢ (.r‘𝑃) = (.r‘𝑃) | |
10 | eqid 2737 | . . . 4 ⊢ (-g‘𝑃) = (-g‘𝑃) | |
11 | 7, 2, 3, 8, 9, 10 | r1pval 25404 | . . 3 ⊢ ((𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → (𝐹𝐸𝐺) = (𝐹(-g‘𝑃)((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺))) |
12 | 1, 6, 11 | syl2anc 584 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐹𝐸𝐺) = (𝐹(-g‘𝑃)((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺))) |
13 | 2 | ply1ring 21502 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
14 | 13 | 3ad2ant1 1132 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝑃 ∈ Ring) |
15 | ringgrp 19863 | . . . 4 ⊢ (𝑃 ∈ Ring → 𝑃 ∈ Grp) | |
16 | 14, 15 | syl 17 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → 𝑃 ∈ Grp) |
17 | 8, 2, 3, 4 | q1pcl 25403 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐹(quot1p‘𝑅)𝐺) ∈ 𝐵) |
18 | 3, 9 | ringcl 19875 | . . . 4 ⊢ ((𝑃 ∈ Ring ∧ (𝐹(quot1p‘𝑅)𝐺) ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺) ∈ 𝐵) |
19 | 14, 17, 6, 18 | syl3anc 1370 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺) ∈ 𝐵) |
20 | 3, 10 | grpsubcl 18731 | . . 3 ⊢ ((𝑃 ∈ Grp ∧ 𝐹 ∈ 𝐵 ∧ ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺) ∈ 𝐵) → (𝐹(-g‘𝑃)((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) ∈ 𝐵) |
21 | 16, 1, 19, 20 | syl3anc 1370 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐹(-g‘𝑃)((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) ∈ 𝐵) |
22 | 12, 21 | eqeltrd 2838 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶) → (𝐹𝐸𝐺) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ‘cfv 6466 (class class class)co 7317 Basecbs 16989 .rcmulr 17040 Grpcgrp 18653 -gcsg 18655 Ringcrg 19858 Poly1cpl1 21431 Unic1pcuc1p 25374 quot1pcq1p 25375 rem1pcr1p 25376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-cnex 11007 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 ax-pre-mulgt0 11028 ax-pre-sup 11029 ax-addf 11030 ax-mulf 11031 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4851 df-int 4893 df-iun 4939 df-iin 4940 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-se 5564 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-isom 6475 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-of 7575 df-ofr 7576 df-om 7760 df-1st 7878 df-2nd 7879 df-supp 8027 df-tpos 8091 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-1o 8346 df-er 8548 df-map 8667 df-pm 8668 df-ixp 8736 df-en 8784 df-dom 8785 df-sdom 8786 df-fin 8787 df-fsupp 9206 df-sup 9278 df-oi 9346 df-card 9775 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-sub 11287 df-neg 11288 df-nn 12054 df-2 12116 df-3 12117 df-4 12118 df-5 12119 df-6 12120 df-7 12121 df-8 12122 df-9 12123 df-n0 12314 df-z 12400 df-dec 12518 df-uz 12663 df-fz 13320 df-fzo 13463 df-seq 13802 df-hash 14125 df-struct 16925 df-sets 16942 df-slot 16960 df-ndx 16972 df-base 16990 df-ress 17019 df-plusg 17052 df-mulr 17053 df-starv 17054 df-sca 17055 df-vsca 17056 df-tset 17058 df-ple 17059 df-ds 17061 df-unif 17062 df-0g 17229 df-gsum 17230 df-mre 17372 df-mrc 17373 df-acs 17375 df-mgm 18403 df-sgrp 18452 df-mnd 18463 df-mhm 18507 df-submnd 18508 df-grp 18656 df-minusg 18657 df-sbg 18658 df-mulg 18777 df-subg 18828 df-ghm 18908 df-cntz 18999 df-cmn 19463 df-abl 19464 df-mgp 19796 df-ur 19813 df-ring 19860 df-cring 19861 df-oppr 19937 df-dvdsr 19958 df-unit 19959 df-invr 19989 df-subrg 20104 df-lmod 20208 df-lss 20277 df-rlreg 20637 df-cnfld 20681 df-psr 21195 df-mvr 21196 df-mpl 21197 df-opsr 21199 df-psr1 21434 df-vr1 21435 df-ply1 21436 df-coe1 21437 df-mdeg 25300 df-deg1 25301 df-uc1p 25379 df-q1p 25380 df-r1p 25381 |
This theorem is referenced by: ply1rem 25411 |
Copyright terms: Public domain | W3C validator |