MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1pdeglt Structured version   Visualization version   GIF version

Theorem r1pdeglt 26140
Description: The remainder has a degree smaller than the divisor. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
r1pval.e 𝐸 = (rem1p𝑅)
r1pval.p 𝑃 = (Poly1𝑅)
r1pval.b 𝐵 = (Base‘𝑃)
r1pcl.c 𝐶 = (Unic1p𝑅)
r1pdeglt.d 𝐷 = ( deg1𝑅)
Assertion
Ref Expression
r1pdeglt ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐷‘(𝐹𝐸𝐺)) < (𝐷𝐺))

Proof of Theorem r1pdeglt
StepHypRef Expression
1 simp2 1134 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝐹𝐵)
2 r1pval.p . . . . . 6 𝑃 = (Poly1𝑅)
3 r1pval.b . . . . . 6 𝐵 = (Base‘𝑃)
4 r1pcl.c . . . . . 6 𝐶 = (Unic1p𝑅)
52, 3, 4uc1pcl 26124 . . . . 5 (𝐺𝐶𝐺𝐵)
653ad2ant3 1132 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝐺𝐵)
7 r1pval.e . . . . 5 𝐸 = (rem1p𝑅)
8 eqid 2725 . . . . 5 (quot1p𝑅) = (quot1p𝑅)
9 eqid 2725 . . . . 5 (.r𝑃) = (.r𝑃)
10 eqid 2725 . . . . 5 (-g𝑃) = (-g𝑃)
117, 2, 3, 8, 9, 10r1pval 26138 . . . 4 ((𝐹𝐵𝐺𝐵) → (𝐹𝐸𝐺) = (𝐹(-g𝑃)((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)))
121, 6, 11syl2anc 582 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐹𝐸𝐺) = (𝐹(-g𝑃)((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)))
1312fveq2d 6900 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐷‘(𝐹𝐸𝐺)) = (𝐷‘(𝐹(-g𝑃)((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))))
14 eqid 2725 . . . 4 (𝐹(quot1p𝑅)𝐺) = (𝐹(quot1p𝑅)𝐺)
15 r1pdeglt.d . . . . 5 𝐷 = ( deg1𝑅)
168, 2, 3, 15, 10, 9, 4q1peqb 26136 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (((𝐹(quot1p𝑅)𝐺) ∈ 𝐵 ∧ (𝐷‘(𝐹(-g𝑃)((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))) < (𝐷𝐺)) ↔ (𝐹(quot1p𝑅)𝐺) = (𝐹(quot1p𝑅)𝐺)))
1714, 16mpbiri 257 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ((𝐹(quot1p𝑅)𝐺) ∈ 𝐵 ∧ (𝐷‘(𝐹(-g𝑃)((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))) < (𝐷𝐺)))
1817simprd 494 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐷‘(𝐹(-g𝑃)((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))) < (𝐷𝐺))
1913, 18eqbrtrd 5171 1 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐷‘(𝐹𝐸𝐺)) < (𝐷𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098   class class class wbr 5149  cfv 6549  (class class class)co 7419   < clt 11280  Basecbs 17183  .rcmulr 17237  -gcsg 18900  Ringcrg 20185  Poly1cpl1 22119   deg1 cdg1 26031  Unic1pcuc1p 26107  quot1pcq1p 26108  rem1pcr1p 26109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217  ax-pre-sup 11218  ax-addf 11219
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-iin 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-ofr 7686  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-sup 9467  df-oi 9535  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12506  df-z 12592  df-dec 12711  df-uz 12856  df-fz 13520  df-fzo 13663  df-seq 14003  df-hash 14326  df-struct 17119  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-starv 17251  df-sca 17252  df-vsca 17253  df-ip 17254  df-tset 17255  df-ple 17256  df-ds 17258  df-unif 17259  df-hom 17260  df-cco 17261  df-0g 17426  df-gsum 17427  df-prds 17432  df-pws 17434  df-mre 17569  df-mrc 17570  df-acs 17572  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-mhm 18743  df-submnd 18744  df-grp 18901  df-minusg 18902  df-sbg 18903  df-mulg 19032  df-subg 19086  df-ghm 19176  df-cntz 19280  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-ring 20187  df-cring 20188  df-oppr 20285  df-dvdsr 20308  df-unit 20309  df-invr 20339  df-subrng 20495  df-subrg 20520  df-lmod 20757  df-lss 20828  df-rlreg 21247  df-cnfld 21297  df-psr 21859  df-mvr 21860  df-mpl 21861  df-opsr 21863  df-psr1 22122  df-vr1 22123  df-ply1 22124  df-coe1 22125  df-mdeg 26032  df-deg1 26033  df-uc1p 26112  df-q1p 26113  df-r1p 26114
This theorem is referenced by:  ply1rem  26145  ig1pdvds  26159  q1pdir  33404  q1pvsca  33405  irredminply  33515  algextdeglem8  33523
  Copyright terms: Public domain W3C validator