MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1pdeglt Structured version   Visualization version   GIF version

Theorem r1pdeglt 25429
Description: The remainder has a degree smaller than the divisor. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
r1pval.e 𝐸 = (rem1p𝑅)
r1pval.p 𝑃 = (Poly1𝑅)
r1pval.b 𝐵 = (Base‘𝑃)
r1pcl.c 𝐶 = (Unic1p𝑅)
r1pdeglt.d 𝐷 = ( deg1𝑅)
Assertion
Ref Expression
r1pdeglt ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐷‘(𝐹𝐸𝐺)) < (𝐷𝐺))

Proof of Theorem r1pdeglt
StepHypRef Expression
1 simp2 1136 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝐹𝐵)
2 r1pval.p . . . . . 6 𝑃 = (Poly1𝑅)
3 r1pval.b . . . . . 6 𝐵 = (Base‘𝑃)
4 r1pcl.c . . . . . 6 𝐶 = (Unic1p𝑅)
52, 3, 4uc1pcl 25414 . . . . 5 (𝐺𝐶𝐺𝐵)
653ad2ant3 1134 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → 𝐺𝐵)
7 r1pval.e . . . . 5 𝐸 = (rem1p𝑅)
8 eqid 2736 . . . . 5 (quot1p𝑅) = (quot1p𝑅)
9 eqid 2736 . . . . 5 (.r𝑃) = (.r𝑃)
10 eqid 2736 . . . . 5 (-g𝑃) = (-g𝑃)
117, 2, 3, 8, 9, 10r1pval 25427 . . . 4 ((𝐹𝐵𝐺𝐵) → (𝐹𝐸𝐺) = (𝐹(-g𝑃)((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)))
121, 6, 11syl2anc 584 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐹𝐸𝐺) = (𝐹(-g𝑃)((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺)))
1312fveq2d 6829 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐷‘(𝐹𝐸𝐺)) = (𝐷‘(𝐹(-g𝑃)((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))))
14 eqid 2736 . . . 4 (𝐹(quot1p𝑅)𝐺) = (𝐹(quot1p𝑅)𝐺)
15 r1pdeglt.d . . . . 5 𝐷 = ( deg1𝑅)
168, 2, 3, 15, 10, 9, 4q1peqb 25425 . . . 4 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (((𝐹(quot1p𝑅)𝐺) ∈ 𝐵 ∧ (𝐷‘(𝐹(-g𝑃)((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))) < (𝐷𝐺)) ↔ (𝐹(quot1p𝑅)𝐺) = (𝐹(quot1p𝑅)𝐺)))
1714, 16mpbiri 257 . . 3 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → ((𝐹(quot1p𝑅)𝐺) ∈ 𝐵 ∧ (𝐷‘(𝐹(-g𝑃)((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))) < (𝐷𝐺)))
1817simprd 496 . 2 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐷‘(𝐹(-g𝑃)((𝐹(quot1p𝑅)𝐺)(.r𝑃)𝐺))) < (𝐷𝐺))
1913, 18eqbrtrd 5114 1 ((𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐶) → (𝐷‘(𝐹𝐸𝐺)) < (𝐷𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105   class class class wbr 5092  cfv 6479  (class class class)co 7337   < clt 11110  Basecbs 17009  .rcmulr 17060  -gcsg 18675  Ringcrg 19878  Poly1cpl1 21454   deg1 cdg1 25322  Unic1pcuc1p 25397  quot1pcq1p 25398  rem1pcr1p 25399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049  ax-pre-sup 11050  ax-addf 11051  ax-mulf 11052
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4853  df-int 4895  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-se 5576  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-isom 6488  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-of 7595  df-ofr 7596  df-om 7781  df-1st 7899  df-2nd 7900  df-supp 8048  df-tpos 8112  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-er 8569  df-map 8688  df-pm 8689  df-ixp 8757  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-fsupp 9227  df-sup 9299  df-oi 9367  df-card 9796  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-nn 12075  df-2 12137  df-3 12138  df-4 12139  df-5 12140  df-6 12141  df-7 12142  df-8 12143  df-9 12144  df-n0 12335  df-z 12421  df-dec 12539  df-uz 12684  df-fz 13341  df-fzo 13484  df-seq 13823  df-hash 14146  df-struct 16945  df-sets 16962  df-slot 16980  df-ndx 16992  df-base 17010  df-ress 17039  df-plusg 17072  df-mulr 17073  df-starv 17074  df-sca 17075  df-vsca 17076  df-tset 17078  df-ple 17079  df-ds 17081  df-unif 17082  df-0g 17249  df-gsum 17250  df-mre 17392  df-mrc 17393  df-acs 17395  df-mgm 18423  df-sgrp 18472  df-mnd 18483  df-mhm 18527  df-submnd 18528  df-grp 18676  df-minusg 18677  df-sbg 18678  df-mulg 18797  df-subg 18848  df-ghm 18928  df-cntz 19019  df-cmn 19483  df-abl 19484  df-mgp 19816  df-ur 19833  df-ring 19880  df-cring 19881  df-oppr 19957  df-dvdsr 19978  df-unit 19979  df-invr 20009  df-subrg 20127  df-lmod 20231  df-lss 20300  df-rlreg 20660  df-cnfld 20704  df-psr 21218  df-mvr 21219  df-mpl 21220  df-opsr 21222  df-psr1 21457  df-vr1 21458  df-ply1 21459  df-coe1 21460  df-mdeg 25323  df-deg1 25324  df-uc1p 25402  df-q1p 25403  df-r1p 25404
This theorem is referenced by:  ply1rem  25434  ig1pdvds  25447
  Copyright terms: Public domain W3C validator