Step | Hyp | Ref
| Expression |
1 | | id 22 |
. . . . . 6
⊢ (𝑎 ∈ ℕ → 𝑎 ∈
ℕ) |
2 | | vdwlem2.n |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℕ) |
3 | | nnaddcl 11244 |
. . . . . 6
⊢ ((𝑎 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑎 + 𝑁) ∈ ℕ) |
4 | 1, 2, 3 | syl2anr 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ ℕ) → (𝑎 + 𝑁) ∈ ℕ) |
5 | | simpllr 760 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑎 ∈ ℕ) |
6 | 5 | nncnd 11238 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑎 ∈ ℂ) |
7 | 2 | ad3antrrr 709 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑁 ∈ ℕ) |
8 | 7 | nncnd 11238 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑁 ∈ ℂ) |
9 | | elfznn0 12640 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ (0...(𝐾 − 1)) → 𝑚 ∈ ℕ0) |
10 | 9 | adantl 467 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ ℕ0) |
11 | 10 | nn0cnd 11555 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ ℂ) |
12 | | simplrl 762 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑑 ∈ ℕ) |
13 | 12 | nncnd 11238 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑑 ∈ ℂ) |
14 | 11, 13 | mulcld 10262 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · 𝑑) ∈ ℂ) |
15 | 6, 8, 14 | add32d 10465 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑎 + 𝑁) + (𝑚 · 𝑑)) = ((𝑎 + (𝑚 · 𝑑)) + 𝑁)) |
16 | | oveq1 6800 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑎 + (𝑚 · 𝑑)) → (𝑥 + 𝑁) = ((𝑎 + (𝑚 · 𝑑)) + 𝑁)) |
17 | 16 | eleq1d 2835 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑎 + (𝑚 · 𝑑)) → ((𝑥 + 𝑁) ∈ (1...𝑀) ↔ ((𝑎 + (𝑚 · 𝑑)) + 𝑁) ∈ (1...𝑀))) |
18 | | elfznn 12577 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ (1...𝑊) → 𝑥 ∈ ℕ) |
19 | | nnaddcl 11244 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑥 + 𝑁) ∈ ℕ) |
20 | 18, 2, 19 | syl2anr 584 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑊)) → (𝑥 + 𝑁) ∈ ℕ) |
21 | | nnuz 11925 |
. . . . . . . . . . . . . . . . . 18
⊢ ℕ =
(ℤ≥‘1) |
22 | 20, 21 | syl6eleq 2860 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑊)) → (𝑥 + 𝑁) ∈
(ℤ≥‘1)) |
23 | | vdwlem2.m |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘(𝑊 + 𝑁))) |
24 | 23 | adantr 466 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑊)) → 𝑀 ∈ (ℤ≥‘(𝑊 + 𝑁))) |
25 | | elfzuz3 12546 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ (1...𝑊) → 𝑊 ∈ (ℤ≥‘𝑥)) |
26 | 2 | nnzd 11683 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑁 ∈ ℤ) |
27 | | eluzadd 11917 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑊 ∈
(ℤ≥‘𝑥) ∧ 𝑁 ∈ ℤ) → (𝑊 + 𝑁) ∈
(ℤ≥‘(𝑥 + 𝑁))) |
28 | 25, 26, 27 | syl2anr 584 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑊)) → (𝑊 + 𝑁) ∈
(ℤ≥‘(𝑥 + 𝑁))) |
29 | | uztrn 11905 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑀 ∈
(ℤ≥‘(𝑊 + 𝑁)) ∧ (𝑊 + 𝑁) ∈
(ℤ≥‘(𝑥 + 𝑁))) → 𝑀 ∈ (ℤ≥‘(𝑥 + 𝑁))) |
30 | 24, 28, 29 | syl2anc 573 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑊)) → 𝑀 ∈ (ℤ≥‘(𝑥 + 𝑁))) |
31 | | elfzuzb 12543 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 + 𝑁) ∈ (1...𝑀) ↔ ((𝑥 + 𝑁) ∈ (ℤ≥‘1)
∧ 𝑀 ∈
(ℤ≥‘(𝑥 + 𝑁)))) |
32 | 22, 30, 31 | sylanbrc 572 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑊)) → (𝑥 + 𝑁) ∈ (1...𝑀)) |
33 | 32 | ralrimiva 3115 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑥 ∈ (1...𝑊)(𝑥 + 𝑁) ∈ (1...𝑀)) |
34 | 33 | ad3antrrr 709 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ∀𝑥 ∈ (1...𝑊)(𝑥 + 𝑁) ∈ (1...𝑀)) |
35 | | simplrr 763 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐})) |
36 | | eqid 2771 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑚 · 𝑑)) |
37 | | oveq1 6800 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑛 = 𝑚 → (𝑛 · 𝑑) = (𝑚 · 𝑑)) |
38 | 37 | oveq2d 6809 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = 𝑚 → (𝑎 + (𝑛 · 𝑑)) = (𝑎 + (𝑚 · 𝑑))) |
39 | 38 | eqeq2d 2781 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = 𝑚 → ((𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑛 · 𝑑)) ↔ (𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑚 · 𝑑)))) |
40 | 39 | rspcev 3460 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑚 ∈ (0...(𝐾 − 1)) ∧ (𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑚 · 𝑑))) → ∃𝑛 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑛 · 𝑑))) |
41 | 36, 40 | mpan2 671 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 ∈ (0...(𝐾 − 1)) → ∃𝑛 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑛 · 𝑑))) |
42 | 41 | adantl 467 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ∃𝑛 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑛 · 𝑑))) |
43 | | vdwlem2.k |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
44 | 43 | ad2antrr 705 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) → 𝐾 ∈
ℕ0) |
45 | 44 | adantr 466 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐾 ∈
ℕ0) |
46 | | vdwapval 15884 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐾 ∈ ℕ0
∧ 𝑎 ∈ ℕ
∧ 𝑑 ∈ ℕ)
→ ((𝑎 + (𝑚 · 𝑑)) ∈ (𝑎(AP‘𝐾)𝑑) ↔ ∃𝑛 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑛 · 𝑑)))) |
47 | 45, 5, 12, 46 | syl3anc 1476 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑎 + (𝑚 · 𝑑)) ∈ (𝑎(AP‘𝐾)𝑑) ↔ ∃𝑛 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑛 · 𝑑)))) |
48 | 42, 47 | mpbird 247 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑎 + (𝑚 · 𝑑)) ∈ (𝑎(AP‘𝐾)𝑑)) |
49 | 35, 48 | sseldd 3753 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐺 “ {𝑐})) |
50 | | vdwlem2.f |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝐹:(1...𝑀)⟶𝑅) |
51 | 50 | ffvelrnda 6502 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑥 + 𝑁) ∈ (1...𝑀)) → (𝐹‘(𝑥 + 𝑁)) ∈ 𝑅) |
52 | 32, 51 | syldan 579 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑊)) → (𝐹‘(𝑥 + 𝑁)) ∈ 𝑅) |
53 | | vdwlem2.g |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐺 = (𝑥 ∈ (1...𝑊) ↦ (𝐹‘(𝑥 + 𝑁))) |
54 | 52, 53 | fmptd 6527 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐺:(1...𝑊)⟶𝑅) |
55 | | ffn 6185 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐺:(1...𝑊)⟶𝑅 → 𝐺 Fn (1...𝑊)) |
56 | 54, 55 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐺 Fn (1...𝑊)) |
57 | 56 | ad3antrrr 709 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐺 Fn (1...𝑊)) |
58 | | fniniseg 6481 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐺 Fn (1...𝑊) → ((𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐺 “ {𝑐}) ↔ ((𝑎 + (𝑚 · 𝑑)) ∈ (1...𝑊) ∧ (𝐺‘(𝑎 + (𝑚 · 𝑑))) = 𝑐))) |
59 | 57, 58 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐺 “ {𝑐}) ↔ ((𝑎 + (𝑚 · 𝑑)) ∈ (1...𝑊) ∧ (𝐺‘(𝑎 + (𝑚 · 𝑑))) = 𝑐))) |
60 | 49, 59 | mpbid 222 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑎 + (𝑚 · 𝑑)) ∈ (1...𝑊) ∧ (𝐺‘(𝑎 + (𝑚 · 𝑑))) = 𝑐)) |
61 | 60 | simpld 482 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑎 + (𝑚 · 𝑑)) ∈ (1...𝑊)) |
62 | 17, 34, 61 | rspcdva 3466 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑎 + (𝑚 · 𝑑)) + 𝑁) ∈ (1...𝑀)) |
63 | 15, 62 | eqeltrd 2850 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑎 + 𝑁) + (𝑚 · 𝑑)) ∈ (1...𝑀)) |
64 | 15 | fveq2d 6336 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐹‘((𝑎 + 𝑁) + (𝑚 · 𝑑))) = (𝐹‘((𝑎 + (𝑚 · 𝑑)) + 𝑁))) |
65 | 16 | fveq2d 6336 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑎 + (𝑚 · 𝑑)) → (𝐹‘(𝑥 + 𝑁)) = (𝐹‘((𝑎 + (𝑚 · 𝑑)) + 𝑁))) |
66 | | fvex 6342 |
. . . . . . . . . . . . . . 15
⊢ (𝐹‘((𝑎 + (𝑚 · 𝑑)) + 𝑁)) ∈ V |
67 | 65, 53, 66 | fvmpt 6424 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 + (𝑚 · 𝑑)) ∈ (1...𝑊) → (𝐺‘(𝑎 + (𝑚 · 𝑑))) = (𝐹‘((𝑎 + (𝑚 · 𝑑)) + 𝑁))) |
68 | 61, 67 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐺‘(𝑎 + (𝑚 · 𝑑))) = (𝐹‘((𝑎 + (𝑚 · 𝑑)) + 𝑁))) |
69 | 60 | simprd 483 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐺‘(𝑎 + (𝑚 · 𝑑))) = 𝑐) |
70 | 64, 68, 69 | 3eqtr2d 2811 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐹‘((𝑎 + 𝑁) + (𝑚 · 𝑑))) = 𝑐) |
71 | 63, 70 | jca 501 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (((𝑎 + 𝑁) + (𝑚 · 𝑑)) ∈ (1...𝑀) ∧ (𝐹‘((𝑎 + 𝑁) + (𝑚 · 𝑑))) = 𝑐)) |
72 | | eleq1 2838 |
. . . . . . . . . . . 12
⊢ (𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑)) → (𝑥 ∈ (1...𝑀) ↔ ((𝑎 + 𝑁) + (𝑚 · 𝑑)) ∈ (1...𝑀))) |
73 | | fveq2 6332 |
. . . . . . . . . . . . 13
⊢ (𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑)) → (𝐹‘𝑥) = (𝐹‘((𝑎 + 𝑁) + (𝑚 · 𝑑)))) |
74 | 73 | eqeq1d 2773 |
. . . . . . . . . . . 12
⊢ (𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑)) → ((𝐹‘𝑥) = 𝑐 ↔ (𝐹‘((𝑎 + 𝑁) + (𝑚 · 𝑑))) = 𝑐)) |
75 | 72, 74 | anbi12d 616 |
. . . . . . . . . . 11
⊢ (𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑)) → ((𝑥 ∈ (1...𝑀) ∧ (𝐹‘𝑥) = 𝑐) ↔ (((𝑎 + 𝑁) + (𝑚 · 𝑑)) ∈ (1...𝑀) ∧ (𝐹‘((𝑎 + 𝑁) + (𝑚 · 𝑑))) = 𝑐))) |
76 | 71, 75 | syl5ibrcom 237 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑)) → (𝑥 ∈ (1...𝑀) ∧ (𝐹‘𝑥) = 𝑐))) |
77 | 76 | rexlimdva 3179 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) → (∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑)) → (𝑥 ∈ (1...𝑀) ∧ (𝐹‘𝑥) = 𝑐))) |
78 | 4 | adantr 466 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) → (𝑎 + 𝑁) ∈ ℕ) |
79 | | simprl 754 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) → 𝑑 ∈ ℕ) |
80 | | vdwapval 15884 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ ℕ0
∧ (𝑎 + 𝑁) ∈ ℕ ∧ 𝑑 ∈ ℕ) → (𝑥 ∈ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑)))) |
81 | 44, 78, 79, 80 | syl3anc 1476 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) → (𝑥 ∈ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑)))) |
82 | | ffn 6185 |
. . . . . . . . . . . 12
⊢ (𝐹:(1...𝑀)⟶𝑅 → 𝐹 Fn (1...𝑀)) |
83 | 50, 82 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 Fn (1...𝑀)) |
84 | 83 | ad2antrr 705 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) → 𝐹 Fn (1...𝑀)) |
85 | | fniniseg 6481 |
. . . . . . . . . 10
⊢ (𝐹 Fn (1...𝑀) → (𝑥 ∈ (◡𝐹 “ {𝑐}) ↔ (𝑥 ∈ (1...𝑀) ∧ (𝐹‘𝑥) = 𝑐))) |
86 | 84, 85 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) → (𝑥 ∈ (◡𝐹 “ {𝑐}) ↔ (𝑥 ∈ (1...𝑀) ∧ (𝐹‘𝑥) = 𝑐))) |
87 | 77, 81, 86 | 3imtr4d 283 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) → (𝑥 ∈ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) → 𝑥 ∈ (◡𝐹 “ {𝑐}))) |
88 | 87 | ssrdv 3758 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) → ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐})) |
89 | 88 | expr 444 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ ℕ) ∧ 𝑑 ∈ ℕ) → ((𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}) → ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}))) |
90 | 89 | reximdva 3165 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ ℕ) → (∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}) → ∃𝑑 ∈ ℕ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}))) |
91 | | oveq1 6800 |
. . . . . . . 8
⊢ (𝑏 = (𝑎 + 𝑁) → (𝑏(AP‘𝐾)𝑑) = ((𝑎 + 𝑁)(AP‘𝐾)𝑑)) |
92 | 91 | sseq1d 3781 |
. . . . . . 7
⊢ (𝑏 = (𝑎 + 𝑁) → ((𝑏(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}) ↔ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}))) |
93 | 92 | rexbidv 3200 |
. . . . . 6
⊢ (𝑏 = (𝑎 + 𝑁) → (∃𝑑 ∈ ℕ (𝑏(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}) ↔ ∃𝑑 ∈ ℕ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}))) |
94 | 93 | rspcev 3460 |
. . . . 5
⊢ (((𝑎 + 𝑁) ∈ ℕ ∧ ∃𝑑 ∈ ℕ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐})) → ∃𝑏 ∈ ℕ ∃𝑑 ∈ ℕ (𝑏(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐})) |
95 | 4, 90, 94 | syl6an 663 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ ℕ) → (∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}) → ∃𝑏 ∈ ℕ ∃𝑑 ∈ ℕ (𝑏(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}))) |
96 | 95 | rexlimdva 3179 |
. . 3
⊢ (𝜑 → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}) → ∃𝑏 ∈ ℕ ∃𝑑 ∈ ℕ (𝑏(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}))) |
97 | 96 | eximdv 1998 |
. 2
⊢ (𝜑 → (∃𝑐∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}) → ∃𝑐∃𝑏 ∈ ℕ ∃𝑑 ∈ ℕ (𝑏(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}))) |
98 | | ovex 6823 |
. . 3
⊢
(1...𝑊) ∈
V |
99 | 98, 43, 54 | vdwmc 15889 |
. 2
⊢ (𝜑 → (𝐾 MonoAP 𝐺 ↔ ∃𝑐∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) |
100 | | ovex 6823 |
. . 3
⊢
(1...𝑀) ∈
V |
101 | 100, 43, 50 | vdwmc 15889 |
. 2
⊢ (𝜑 → (𝐾 MonoAP 𝐹 ↔ ∃𝑐∃𝑏 ∈ ℕ ∃𝑑 ∈ ℕ (𝑏(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}))) |
102 | 97, 99, 101 | 3imtr4d 283 |
1
⊢ (𝜑 → (𝐾 MonoAP 𝐺 → 𝐾 MonoAP 𝐹)) |