MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem2 Structured version   Visualization version   GIF version

Theorem vdwlem2 16929
Description: Lemma for vdw 16941. (Contributed by Mario Carneiro, 12-Sep-2014.)
Hypotheses
Ref Expression
vdwlem2.r (𝜑𝑅 ∈ Fin)
vdwlem2.k (𝜑𝐾 ∈ ℕ0)
vdwlem2.w (𝜑𝑊 ∈ ℕ)
vdwlem2.n (𝜑𝑁 ∈ ℕ)
vdwlem2.f (𝜑𝐹:(1...𝑀)⟶𝑅)
vdwlem2.m (𝜑𝑀 ∈ (ℤ‘(𝑊 + 𝑁)))
vdwlem2.g 𝐺 = (𝑥 ∈ (1...𝑊) ↦ (𝐹‘(𝑥 + 𝑁)))
Assertion
Ref Expression
vdwlem2 (𝜑 → (𝐾 MonoAP 𝐺𝐾 MonoAP 𝐹))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐾   𝑥,𝑀   𝜑,𝑥   𝑥,𝐺   𝑥,𝑁   𝑥,𝑅   𝑥,𝑊

Proof of Theorem vdwlem2
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . 6 (𝑎 ∈ ℕ → 𝑎 ∈ ℕ)
2 vdwlem2.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
3 nnaddcl 12185 . . . . . 6 ((𝑎 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑎 + 𝑁) ∈ ℕ)
41, 2, 3syl2anr 597 . . . . 5 ((𝜑𝑎 ∈ ℕ) → (𝑎 + 𝑁) ∈ ℕ)
5 simpllr 775 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑎 ∈ ℕ)
65nncnd 12178 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑎 ∈ ℂ)
72ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑁 ∈ ℕ)
87nncnd 12178 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑁 ∈ ℂ)
9 elfznn0 13557 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (0...(𝐾 − 1)) → 𝑚 ∈ ℕ0)
109adantl 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ ℕ0)
1110nn0cnd 12481 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ ℂ)
12 simplrl 776 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑑 ∈ ℕ)
1312nncnd 12178 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑑 ∈ ℂ)
1411, 13mulcld 11170 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · 𝑑) ∈ ℂ)
156, 8, 14add32d 11378 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑎 + 𝑁) + (𝑚 · 𝑑)) = ((𝑎 + (𝑚 · 𝑑)) + 𝑁))
16 oveq1 7376 . . . . . . . . . . . . . . 15 (𝑥 = (𝑎 + (𝑚 · 𝑑)) → (𝑥 + 𝑁) = ((𝑎 + (𝑚 · 𝑑)) + 𝑁))
1716eleq1d 2813 . . . . . . . . . . . . . 14 (𝑥 = (𝑎 + (𝑚 · 𝑑)) → ((𝑥 + 𝑁) ∈ (1...𝑀) ↔ ((𝑎 + (𝑚 · 𝑑)) + 𝑁) ∈ (1...𝑀)))
18 elfznn 13490 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (1...𝑊) → 𝑥 ∈ ℕ)
19 nnaddcl 12185 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑥 + 𝑁) ∈ ℕ)
2018, 2, 19syl2anr 597 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1...𝑊)) → (𝑥 + 𝑁) ∈ ℕ)
21 nnuz 12812 . . . . . . . . . . . . . . . . . 18 ℕ = (ℤ‘1)
2220, 21eleqtrdi 2838 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...𝑊)) → (𝑥 + 𝑁) ∈ (ℤ‘1))
23 vdwlem2.m . . . . . . . . . . . . . . . . . 18 (𝜑𝑀 ∈ (ℤ‘(𝑊 + 𝑁)))
24 elfzuz3 13458 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (1...𝑊) → 𝑊 ∈ (ℤ𝑥))
252nnzd 12532 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ ℤ)
26 eluzadd 12798 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ (ℤ𝑥) ∧ 𝑁 ∈ ℤ) → (𝑊 + 𝑁) ∈ (ℤ‘(𝑥 + 𝑁)))
2724, 25, 26syl2anr 597 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1...𝑊)) → (𝑊 + 𝑁) ∈ (ℤ‘(𝑥 + 𝑁)))
28 uztrn 12787 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ (ℤ‘(𝑊 + 𝑁)) ∧ (𝑊 + 𝑁) ∈ (ℤ‘(𝑥 + 𝑁))) → 𝑀 ∈ (ℤ‘(𝑥 + 𝑁)))
2923, 27, 28syl2an2r 685 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...𝑊)) → 𝑀 ∈ (ℤ‘(𝑥 + 𝑁)))
30 elfzuzb 13455 . . . . . . . . . . . . . . . . 17 ((𝑥 + 𝑁) ∈ (1...𝑀) ↔ ((𝑥 + 𝑁) ∈ (ℤ‘1) ∧ 𝑀 ∈ (ℤ‘(𝑥 + 𝑁))))
3122, 29, 30sylanbrc 583 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...𝑊)) → (𝑥 + 𝑁) ∈ (1...𝑀))
3231ralrimiva 3125 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑥 ∈ (1...𝑊)(𝑥 + 𝑁) ∈ (1...𝑀))
3332ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ∀𝑥 ∈ (1...𝑊)(𝑥 + 𝑁) ∈ (1...𝑀))
34 simplrr 777 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))
35 eqid 2729 . . . . . . . . . . . . . . . . . . . 20 (𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑚 · 𝑑))
36 oveq1 7376 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑚 → (𝑛 · 𝑑) = (𝑚 · 𝑑))
3736oveq2d 7385 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑚 → (𝑎 + (𝑛 · 𝑑)) = (𝑎 + (𝑚 · 𝑑)))
3837rspceeqv 3608 . . . . . . . . . . . . . . . . . . . 20 ((𝑚 ∈ (0...(𝐾 − 1)) ∧ (𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑚 · 𝑑))) → ∃𝑛 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑛 · 𝑑)))
3935, 38mpan2 691 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ (0...(𝐾 − 1)) → ∃𝑛 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑛 · 𝑑)))
4039adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ∃𝑛 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑛 · 𝑑)))
41 vdwlem2.k . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐾 ∈ ℕ0)
4241ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) → 𝐾 ∈ ℕ0)
4342adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐾 ∈ ℕ0)
44 vdwapval 16920 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℕ0𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → ((𝑎 + (𝑚 · 𝑑)) ∈ (𝑎(AP‘𝐾)𝑑) ↔ ∃𝑛 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑛 · 𝑑))))
4543, 5, 12, 44syl3anc 1373 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑎 + (𝑚 · 𝑑)) ∈ (𝑎(AP‘𝐾)𝑑) ↔ ∃𝑛 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑛 · 𝑑))))
4640, 45mpbird 257 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑎 + (𝑚 · 𝑑)) ∈ (𝑎(AP‘𝐾)𝑑))
4734, 46sseldd 3944 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑎 + (𝑚 · 𝑑)) ∈ (𝐺 “ {𝑐}))
48 vdwlem2.f . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐹:(1...𝑀)⟶𝑅)
4948ffvelcdmda 7038 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑥 + 𝑁) ∈ (1...𝑀)) → (𝐹‘(𝑥 + 𝑁)) ∈ 𝑅)
5031, 49syldan 591 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...𝑊)) → (𝐹‘(𝑥 + 𝑁)) ∈ 𝑅)
51 vdwlem2.g . . . . . . . . . . . . . . . . . . . 20 𝐺 = (𝑥 ∈ (1...𝑊) ↦ (𝐹‘(𝑥 + 𝑁)))
5250, 51fmptd 7068 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐺:(1...𝑊)⟶𝑅)
5352ffnd 6671 . . . . . . . . . . . . . . . . . 18 (𝜑𝐺 Fn (1...𝑊))
5453ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐺 Fn (1...𝑊))
55 fniniseg 7014 . . . . . . . . . . . . . . . . 17 (𝐺 Fn (1...𝑊) → ((𝑎 + (𝑚 · 𝑑)) ∈ (𝐺 “ {𝑐}) ↔ ((𝑎 + (𝑚 · 𝑑)) ∈ (1...𝑊) ∧ (𝐺‘(𝑎 + (𝑚 · 𝑑))) = 𝑐)))
5654, 55syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑎 + (𝑚 · 𝑑)) ∈ (𝐺 “ {𝑐}) ↔ ((𝑎 + (𝑚 · 𝑑)) ∈ (1...𝑊) ∧ (𝐺‘(𝑎 + (𝑚 · 𝑑))) = 𝑐)))
5747, 56mpbid 232 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑎 + (𝑚 · 𝑑)) ∈ (1...𝑊) ∧ (𝐺‘(𝑎 + (𝑚 · 𝑑))) = 𝑐))
5857simpld 494 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑎 + (𝑚 · 𝑑)) ∈ (1...𝑊))
5917, 33, 58rspcdva 3586 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑎 + (𝑚 · 𝑑)) + 𝑁) ∈ (1...𝑀))
6015, 59eqeltrd 2828 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑎 + 𝑁) + (𝑚 · 𝑑)) ∈ (1...𝑀))
6115fveq2d 6844 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐹‘((𝑎 + 𝑁) + (𝑚 · 𝑑))) = (𝐹‘((𝑎 + (𝑚 · 𝑑)) + 𝑁)))
6216fveq2d 6844 . . . . . . . . . . . . . . 15 (𝑥 = (𝑎 + (𝑚 · 𝑑)) → (𝐹‘(𝑥 + 𝑁)) = (𝐹‘((𝑎 + (𝑚 · 𝑑)) + 𝑁)))
63 fvex 6853 . . . . . . . . . . . . . . 15 (𝐹‘((𝑎 + (𝑚 · 𝑑)) + 𝑁)) ∈ V
6462, 51, 63fvmpt 6950 . . . . . . . . . . . . . 14 ((𝑎 + (𝑚 · 𝑑)) ∈ (1...𝑊) → (𝐺‘(𝑎 + (𝑚 · 𝑑))) = (𝐹‘((𝑎 + (𝑚 · 𝑑)) + 𝑁)))
6558, 64syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐺‘(𝑎 + (𝑚 · 𝑑))) = (𝐹‘((𝑎 + (𝑚 · 𝑑)) + 𝑁)))
6657simprd 495 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐺‘(𝑎 + (𝑚 · 𝑑))) = 𝑐)
6761, 65, 663eqtr2d 2770 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐹‘((𝑎 + 𝑁) + (𝑚 · 𝑑))) = 𝑐)
6860, 67jca 511 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (((𝑎 + 𝑁) + (𝑚 · 𝑑)) ∈ (1...𝑀) ∧ (𝐹‘((𝑎 + 𝑁) + (𝑚 · 𝑑))) = 𝑐))
69 eleq1 2816 . . . . . . . . . . . 12 (𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑)) → (𝑥 ∈ (1...𝑀) ↔ ((𝑎 + 𝑁) + (𝑚 · 𝑑)) ∈ (1...𝑀)))
70 fveqeq2 6849 . . . . . . . . . . . 12 (𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑)) → ((𝐹𝑥) = 𝑐 ↔ (𝐹‘((𝑎 + 𝑁) + (𝑚 · 𝑑))) = 𝑐))
7169, 70anbi12d 632 . . . . . . . . . . 11 (𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑)) → ((𝑥 ∈ (1...𝑀) ∧ (𝐹𝑥) = 𝑐) ↔ (((𝑎 + 𝑁) + (𝑚 · 𝑑)) ∈ (1...𝑀) ∧ (𝐹‘((𝑎 + 𝑁) + (𝑚 · 𝑑))) = 𝑐)))
7268, 71syl5ibrcom 247 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑)) → (𝑥 ∈ (1...𝑀) ∧ (𝐹𝑥) = 𝑐)))
7372rexlimdva 3134 . . . . . . . . 9 (((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) → (∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑)) → (𝑥 ∈ (1...𝑀) ∧ (𝐹𝑥) = 𝑐)))
744adantr 480 . . . . . . . . . 10 (((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) → (𝑎 + 𝑁) ∈ ℕ)
75 simprl 770 . . . . . . . . . 10 (((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) → 𝑑 ∈ ℕ)
76 vdwapval 16920 . . . . . . . . . 10 ((𝐾 ∈ ℕ0 ∧ (𝑎 + 𝑁) ∈ ℕ ∧ 𝑑 ∈ ℕ) → (𝑥 ∈ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑))))
7742, 74, 75, 76syl3anc 1373 . . . . . . . . 9 (((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) → (𝑥 ∈ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑))))
7848ffnd 6671 . . . . . . . . . . 11 (𝜑𝐹 Fn (1...𝑀))
7978ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) → 𝐹 Fn (1...𝑀))
80 fniniseg 7014 . . . . . . . . . 10 (𝐹 Fn (1...𝑀) → (𝑥 ∈ (𝐹 “ {𝑐}) ↔ (𝑥 ∈ (1...𝑀) ∧ (𝐹𝑥) = 𝑐)))
8179, 80syl 17 . . . . . . . . 9 (((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) → (𝑥 ∈ (𝐹 “ {𝑐}) ↔ (𝑥 ∈ (1...𝑀) ∧ (𝐹𝑥) = 𝑐)))
8273, 77, 813imtr4d 294 . . . . . . . 8 (((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) → (𝑥 ∈ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) → 𝑥 ∈ (𝐹 “ {𝑐})))
8382ssrdv 3949 . . . . . . 7 (((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) → ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
8483expr 456 . . . . . 6 (((𝜑𝑎 ∈ ℕ) ∧ 𝑑 ∈ ℕ) → ((𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}) → ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
8584reximdva 3146 . . . . 5 ((𝜑𝑎 ∈ ℕ) → (∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}) → ∃𝑑 ∈ ℕ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
86 oveq1 7376 . . . . . . . 8 (𝑏 = (𝑎 + 𝑁) → (𝑏(AP‘𝐾)𝑑) = ((𝑎 + 𝑁)(AP‘𝐾)𝑑))
8786sseq1d 3975 . . . . . . 7 (𝑏 = (𝑎 + 𝑁) → ((𝑏(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
8887rexbidv 3157 . . . . . 6 (𝑏 = (𝑎 + 𝑁) → (∃𝑑 ∈ ℕ (𝑏(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ ∃𝑑 ∈ ℕ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
8988rspcev 3585 . . . . 5 (((𝑎 + 𝑁) ∈ ℕ ∧ ∃𝑑 ∈ ℕ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})) → ∃𝑏 ∈ ℕ ∃𝑑 ∈ ℕ (𝑏(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
904, 85, 89syl6an 684 . . . 4 ((𝜑𝑎 ∈ ℕ) → (∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}) → ∃𝑏 ∈ ℕ ∃𝑑 ∈ ℕ (𝑏(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
9190rexlimdva 3134 . . 3 (𝜑 → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}) → ∃𝑏 ∈ ℕ ∃𝑑 ∈ ℕ (𝑏(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
9291eximdv 1917 . 2 (𝜑 → (∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}) → ∃𝑐𝑏 ∈ ℕ ∃𝑑 ∈ ℕ (𝑏(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
93 ovex 7402 . . 3 (1...𝑊) ∈ V
9493, 41, 52vdwmc 16925 . 2 (𝜑 → (𝐾 MonoAP 𝐺 ↔ ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐})))
95 ovex 7402 . . 3 (1...𝑀) ∈ V
9695, 41, 48vdwmc 16925 . 2 (𝜑 → (𝐾 MonoAP 𝐹 ↔ ∃𝑐𝑏 ∈ ℕ ∃𝑑 ∈ ℕ (𝑏(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
9792, 94, 963imtr4d 294 1 (𝜑 → (𝐾 MonoAP 𝐺𝐾 MonoAP 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  wss 3911  {csn 4585   class class class wbr 5102  cmpt 5183  ccnv 5630  cima 5634   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  Fincfn 8895  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  cmin 11381  cn 12162  0cn0 12418  cz 12505  cuz 12769  ...cfz 13444  APcvdwa 16912   MonoAP cvdwm 16913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-vdwap 16915  df-vdwmc 16916
This theorem is referenced by:  vdwlem9  16936
  Copyright terms: Public domain W3C validator