Step | Hyp | Ref
| Expression |
1 | | id 22 |
. . . . . 6
⊢ (𝑎 ∈ ℕ → 𝑎 ∈
ℕ) |
2 | | vdwlem2.n |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℕ) |
3 | | nnaddcl 11996 |
. . . . . 6
⊢ ((𝑎 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑎 + 𝑁) ∈ ℕ) |
4 | 1, 2, 3 | syl2anr 597 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ ℕ) → (𝑎 + 𝑁) ∈ ℕ) |
5 | | simpllr 773 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑎 ∈ ℕ) |
6 | 5 | nncnd 11989 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑎 ∈ ℂ) |
7 | 2 | ad3antrrr 727 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑁 ∈ ℕ) |
8 | 7 | nncnd 11989 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑁 ∈ ℂ) |
9 | | elfznn0 13349 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ (0...(𝐾 − 1)) → 𝑚 ∈ ℕ0) |
10 | 9 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ ℕ0) |
11 | 10 | nn0cnd 12295 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ ℂ) |
12 | | simplrl 774 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑑 ∈ ℕ) |
13 | 12 | nncnd 11989 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑑 ∈ ℂ) |
14 | 11, 13 | mulcld 10995 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · 𝑑) ∈ ℂ) |
15 | 6, 8, 14 | add32d 11202 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑎 + 𝑁) + (𝑚 · 𝑑)) = ((𝑎 + (𝑚 · 𝑑)) + 𝑁)) |
16 | | oveq1 7282 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑎 + (𝑚 · 𝑑)) → (𝑥 + 𝑁) = ((𝑎 + (𝑚 · 𝑑)) + 𝑁)) |
17 | 16 | eleq1d 2823 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝑎 + (𝑚 · 𝑑)) → ((𝑥 + 𝑁) ∈ (1...𝑀) ↔ ((𝑎 + (𝑚 · 𝑑)) + 𝑁) ∈ (1...𝑀))) |
18 | | elfznn 13285 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ (1...𝑊) → 𝑥 ∈ ℕ) |
19 | | nnaddcl 11996 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑥 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑥 + 𝑁) ∈ ℕ) |
20 | 18, 2, 19 | syl2anr 597 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑊)) → (𝑥 + 𝑁) ∈ ℕ) |
21 | | nnuz 12621 |
. . . . . . . . . . . . . . . . . 18
⊢ ℕ =
(ℤ≥‘1) |
22 | 20, 21 | eleqtrdi 2849 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑊)) → (𝑥 + 𝑁) ∈
(ℤ≥‘1)) |
23 | | vdwlem2.m |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘(𝑊 + 𝑁))) |
24 | | elfzuz3 13253 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ (1...𝑊) → 𝑊 ∈ (ℤ≥‘𝑥)) |
25 | 2 | nnzd 12425 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑁 ∈ ℤ) |
26 | | eluzadd 12613 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑊 ∈
(ℤ≥‘𝑥) ∧ 𝑁 ∈ ℤ) → (𝑊 + 𝑁) ∈
(ℤ≥‘(𝑥 + 𝑁))) |
27 | 24, 25, 26 | syl2anr 597 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑊)) → (𝑊 + 𝑁) ∈
(ℤ≥‘(𝑥 + 𝑁))) |
28 | | uztrn 12600 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑀 ∈
(ℤ≥‘(𝑊 + 𝑁)) ∧ (𝑊 + 𝑁) ∈
(ℤ≥‘(𝑥 + 𝑁))) → 𝑀 ∈ (ℤ≥‘(𝑥 + 𝑁))) |
29 | 23, 27, 28 | syl2an2r 682 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑊)) → 𝑀 ∈ (ℤ≥‘(𝑥 + 𝑁))) |
30 | | elfzuzb 13250 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 + 𝑁) ∈ (1...𝑀) ↔ ((𝑥 + 𝑁) ∈ (ℤ≥‘1)
∧ 𝑀 ∈
(ℤ≥‘(𝑥 + 𝑁)))) |
31 | 22, 29, 30 | sylanbrc 583 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑊)) → (𝑥 + 𝑁) ∈ (1...𝑀)) |
32 | 31 | ralrimiva 3103 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑥 ∈ (1...𝑊)(𝑥 + 𝑁) ∈ (1...𝑀)) |
33 | 32 | ad3antrrr 727 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ∀𝑥 ∈ (1...𝑊)(𝑥 + 𝑁) ∈ (1...𝑀)) |
34 | | simplrr 775 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐})) |
35 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑚 · 𝑑)) |
36 | | oveq1 7282 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑛 = 𝑚 → (𝑛 · 𝑑) = (𝑚 · 𝑑)) |
37 | 36 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑛 = 𝑚 → (𝑎 + (𝑛 · 𝑑)) = (𝑎 + (𝑚 · 𝑑))) |
38 | 37 | rspceeqv 3575 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑚 ∈ (0...(𝐾 − 1)) ∧ (𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑚 · 𝑑))) → ∃𝑛 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑛 · 𝑑))) |
39 | 35, 38 | mpan2 688 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑚 ∈ (0...(𝐾 − 1)) → ∃𝑛 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑛 · 𝑑))) |
40 | 39 | adantl 482 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ∃𝑛 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑛 · 𝑑))) |
41 | | vdwlem2.k |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
42 | 41 | ad2antrr 723 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) → 𝐾 ∈
ℕ0) |
43 | 42 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐾 ∈
ℕ0) |
44 | | vdwapval 16674 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐾 ∈ ℕ0
∧ 𝑎 ∈ ℕ
∧ 𝑑 ∈ ℕ)
→ ((𝑎 + (𝑚 · 𝑑)) ∈ (𝑎(AP‘𝐾)𝑑) ↔ ∃𝑛 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑛 · 𝑑)))) |
45 | 43, 5, 12, 44 | syl3anc 1370 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑎 + (𝑚 · 𝑑)) ∈ (𝑎(AP‘𝐾)𝑑) ↔ ∃𝑛 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑛 · 𝑑)))) |
46 | 40, 45 | mpbird 256 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑎 + (𝑚 · 𝑑)) ∈ (𝑎(AP‘𝐾)𝑑)) |
47 | 34, 46 | sseldd 3922 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐺 “ {𝑐})) |
48 | | vdwlem2.f |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝐹:(1...𝑀)⟶𝑅) |
49 | 48 | ffvelrnda 6961 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ (𝑥 + 𝑁) ∈ (1...𝑀)) → (𝐹‘(𝑥 + 𝑁)) ∈ 𝑅) |
50 | 31, 49 | syldan 591 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑥 ∈ (1...𝑊)) → (𝐹‘(𝑥 + 𝑁)) ∈ 𝑅) |
51 | | vdwlem2.g |
. . . . . . . . . . . . . . . . . . . 20
⊢ 𝐺 = (𝑥 ∈ (1...𝑊) ↦ (𝐹‘(𝑥 + 𝑁))) |
52 | 50, 51 | fmptd 6988 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐺:(1...𝑊)⟶𝑅) |
53 | 52 | ffnd 6601 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐺 Fn (1...𝑊)) |
54 | 53 | ad3antrrr 727 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐺 Fn (1...𝑊)) |
55 | | fniniseg 6937 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐺 Fn (1...𝑊) → ((𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐺 “ {𝑐}) ↔ ((𝑎 + (𝑚 · 𝑑)) ∈ (1...𝑊) ∧ (𝐺‘(𝑎 + (𝑚 · 𝑑))) = 𝑐))) |
56 | 54, 55 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑎 + (𝑚 · 𝑑)) ∈ (◡𝐺 “ {𝑐}) ↔ ((𝑎 + (𝑚 · 𝑑)) ∈ (1...𝑊) ∧ (𝐺‘(𝑎 + (𝑚 · 𝑑))) = 𝑐))) |
57 | 47, 56 | mpbid 231 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑎 + (𝑚 · 𝑑)) ∈ (1...𝑊) ∧ (𝐺‘(𝑎 + (𝑚 · 𝑑))) = 𝑐)) |
58 | 57 | simpld 495 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑎 + (𝑚 · 𝑑)) ∈ (1...𝑊)) |
59 | 17, 33, 58 | rspcdva 3562 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑎 + (𝑚 · 𝑑)) + 𝑁) ∈ (1...𝑀)) |
60 | 15, 59 | eqeltrd 2839 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑎 + 𝑁) + (𝑚 · 𝑑)) ∈ (1...𝑀)) |
61 | 15 | fveq2d 6778 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐹‘((𝑎 + 𝑁) + (𝑚 · 𝑑))) = (𝐹‘((𝑎 + (𝑚 · 𝑑)) + 𝑁))) |
62 | 16 | fveq2d 6778 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = (𝑎 + (𝑚 · 𝑑)) → (𝐹‘(𝑥 + 𝑁)) = (𝐹‘((𝑎 + (𝑚 · 𝑑)) + 𝑁))) |
63 | | fvex 6787 |
. . . . . . . . . . . . . . 15
⊢ (𝐹‘((𝑎 + (𝑚 · 𝑑)) + 𝑁)) ∈ V |
64 | 62, 51, 63 | fvmpt 6875 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 + (𝑚 · 𝑑)) ∈ (1...𝑊) → (𝐺‘(𝑎 + (𝑚 · 𝑑))) = (𝐹‘((𝑎 + (𝑚 · 𝑑)) + 𝑁))) |
65 | 58, 64 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐺‘(𝑎 + (𝑚 · 𝑑))) = (𝐹‘((𝑎 + (𝑚 · 𝑑)) + 𝑁))) |
66 | 57 | simprd 496 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐺‘(𝑎 + (𝑚 · 𝑑))) = 𝑐) |
67 | 61, 65, 66 | 3eqtr2d 2784 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐹‘((𝑎 + 𝑁) + (𝑚 · 𝑑))) = 𝑐) |
68 | 60, 67 | jca 512 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (((𝑎 + 𝑁) + (𝑚 · 𝑑)) ∈ (1...𝑀) ∧ (𝐹‘((𝑎 + 𝑁) + (𝑚 · 𝑑))) = 𝑐)) |
69 | | eleq1 2826 |
. . . . . . . . . . . 12
⊢ (𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑)) → (𝑥 ∈ (1...𝑀) ↔ ((𝑎 + 𝑁) + (𝑚 · 𝑑)) ∈ (1...𝑀))) |
70 | | fveqeq2 6783 |
. . . . . . . . . . . 12
⊢ (𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑)) → ((𝐹‘𝑥) = 𝑐 ↔ (𝐹‘((𝑎 + 𝑁) + (𝑚 · 𝑑))) = 𝑐)) |
71 | 69, 70 | anbi12d 631 |
. . . . . . . . . . 11
⊢ (𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑)) → ((𝑥 ∈ (1...𝑀) ∧ (𝐹‘𝑥) = 𝑐) ↔ (((𝑎 + 𝑁) + (𝑚 · 𝑑)) ∈ (1...𝑀) ∧ (𝐹‘((𝑎 + 𝑁) + (𝑚 · 𝑑))) = 𝑐))) |
72 | 68, 71 | syl5ibrcom 246 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑)) → (𝑥 ∈ (1...𝑀) ∧ (𝐹‘𝑥) = 𝑐))) |
73 | 72 | rexlimdva 3213 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) → (∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑)) → (𝑥 ∈ (1...𝑀) ∧ (𝐹‘𝑥) = 𝑐))) |
74 | 4 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) → (𝑎 + 𝑁) ∈ ℕ) |
75 | | simprl 768 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) → 𝑑 ∈ ℕ) |
76 | | vdwapval 16674 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ ℕ0
∧ (𝑎 + 𝑁) ∈ ℕ ∧ 𝑑 ∈ ℕ) → (𝑥 ∈ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑)))) |
77 | 42, 74, 75, 76 | syl3anc 1370 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) → (𝑥 ∈ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑)))) |
78 | 48 | ffnd 6601 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹 Fn (1...𝑀)) |
79 | 78 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) → 𝐹 Fn (1...𝑀)) |
80 | | fniniseg 6937 |
. . . . . . . . . 10
⊢ (𝐹 Fn (1...𝑀) → (𝑥 ∈ (◡𝐹 “ {𝑐}) ↔ (𝑥 ∈ (1...𝑀) ∧ (𝐹‘𝑥) = 𝑐))) |
81 | 79, 80 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) → (𝑥 ∈ (◡𝐹 “ {𝑐}) ↔ (𝑥 ∈ (1...𝑀) ∧ (𝐹‘𝑥) = 𝑐))) |
82 | 73, 77, 81 | 3imtr4d 294 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) → (𝑥 ∈ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) → 𝑥 ∈ (◡𝐹 “ {𝑐}))) |
83 | 82 | ssrdv 3927 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) → ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐})) |
84 | 83 | expr 457 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑎 ∈ ℕ) ∧ 𝑑 ∈ ℕ) → ((𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}) → ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}))) |
85 | 84 | reximdva 3203 |
. . . . 5
⊢ ((𝜑 ∧ 𝑎 ∈ ℕ) → (∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}) → ∃𝑑 ∈ ℕ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}))) |
86 | | oveq1 7282 |
. . . . . . . 8
⊢ (𝑏 = (𝑎 + 𝑁) → (𝑏(AP‘𝐾)𝑑) = ((𝑎 + 𝑁)(AP‘𝐾)𝑑)) |
87 | 86 | sseq1d 3952 |
. . . . . . 7
⊢ (𝑏 = (𝑎 + 𝑁) → ((𝑏(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}) ↔ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}))) |
88 | 87 | rexbidv 3226 |
. . . . . 6
⊢ (𝑏 = (𝑎 + 𝑁) → (∃𝑑 ∈ ℕ (𝑏(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}) ↔ ∃𝑑 ∈ ℕ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}))) |
89 | 88 | rspcev 3561 |
. . . . 5
⊢ (((𝑎 + 𝑁) ∈ ℕ ∧ ∃𝑑 ∈ ℕ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐})) → ∃𝑏 ∈ ℕ ∃𝑑 ∈ ℕ (𝑏(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐})) |
90 | 4, 85, 89 | syl6an 681 |
. . . 4
⊢ ((𝜑 ∧ 𝑎 ∈ ℕ) → (∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}) → ∃𝑏 ∈ ℕ ∃𝑑 ∈ ℕ (𝑏(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}))) |
91 | 90 | rexlimdva 3213 |
. . 3
⊢ (𝜑 → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}) → ∃𝑏 ∈ ℕ ∃𝑑 ∈ ℕ (𝑏(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}))) |
92 | 91 | eximdv 1920 |
. 2
⊢ (𝜑 → (∃𝑐∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}) → ∃𝑐∃𝑏 ∈ ℕ ∃𝑑 ∈ ℕ (𝑏(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}))) |
93 | | ovex 7308 |
. . 3
⊢
(1...𝑊) ∈
V |
94 | 93, 41, 52 | vdwmc 16679 |
. 2
⊢ (𝜑 → (𝐾 MonoAP 𝐺 ↔ ∃𝑐∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (◡𝐺 “ {𝑐}))) |
95 | | ovex 7308 |
. . 3
⊢
(1...𝑀) ∈
V |
96 | 95, 41, 48 | vdwmc 16679 |
. 2
⊢ (𝜑 → (𝐾 MonoAP 𝐹 ↔ ∃𝑐∃𝑏 ∈ ℕ ∃𝑑 ∈ ℕ (𝑏(AP‘𝐾)𝑑) ⊆ (◡𝐹 “ {𝑐}))) |
97 | 92, 94, 96 | 3imtr4d 294 |
1
⊢ (𝜑 → (𝐾 MonoAP 𝐺 → 𝐾 MonoAP 𝐹)) |