MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem2 Structured version   Visualization version   GIF version

Theorem vdwlem2 17016
Description: Lemma for vdw 17028. (Contributed by Mario Carneiro, 12-Sep-2014.)
Hypotheses
Ref Expression
vdwlem2.r (𝜑𝑅 ∈ Fin)
vdwlem2.k (𝜑𝐾 ∈ ℕ0)
vdwlem2.w (𝜑𝑊 ∈ ℕ)
vdwlem2.n (𝜑𝑁 ∈ ℕ)
vdwlem2.f (𝜑𝐹:(1...𝑀)⟶𝑅)
vdwlem2.m (𝜑𝑀 ∈ (ℤ‘(𝑊 + 𝑁)))
vdwlem2.g 𝐺 = (𝑥 ∈ (1...𝑊) ↦ (𝐹‘(𝑥 + 𝑁)))
Assertion
Ref Expression
vdwlem2 (𝜑 → (𝐾 MonoAP 𝐺𝐾 MonoAP 𝐹))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐾   𝑥,𝑀   𝜑,𝑥   𝑥,𝐺   𝑥,𝑁   𝑥,𝑅   𝑥,𝑊

Proof of Theorem vdwlem2
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . 6 (𝑎 ∈ ℕ → 𝑎 ∈ ℕ)
2 vdwlem2.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
3 nnaddcl 12287 . . . . . 6 ((𝑎 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑎 + 𝑁) ∈ ℕ)
41, 2, 3syl2anr 597 . . . . 5 ((𝜑𝑎 ∈ ℕ) → (𝑎 + 𝑁) ∈ ℕ)
5 simpllr 776 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑎 ∈ ℕ)
65nncnd 12280 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑎 ∈ ℂ)
72ad3antrrr 730 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑁 ∈ ℕ)
87nncnd 12280 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑁 ∈ ℂ)
9 elfznn0 13657 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (0...(𝐾 − 1)) → 𝑚 ∈ ℕ0)
109adantl 481 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ ℕ0)
1110nn0cnd 12587 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ ℂ)
12 simplrl 777 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑑 ∈ ℕ)
1312nncnd 12280 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑑 ∈ ℂ)
1411, 13mulcld 11279 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · 𝑑) ∈ ℂ)
156, 8, 14add32d 11487 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑎 + 𝑁) + (𝑚 · 𝑑)) = ((𝑎 + (𝑚 · 𝑑)) + 𝑁))
16 oveq1 7438 . . . . . . . . . . . . . . 15 (𝑥 = (𝑎 + (𝑚 · 𝑑)) → (𝑥 + 𝑁) = ((𝑎 + (𝑚 · 𝑑)) + 𝑁))
1716eleq1d 2824 . . . . . . . . . . . . . 14 (𝑥 = (𝑎 + (𝑚 · 𝑑)) → ((𝑥 + 𝑁) ∈ (1...𝑀) ↔ ((𝑎 + (𝑚 · 𝑑)) + 𝑁) ∈ (1...𝑀)))
18 elfznn 13590 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (1...𝑊) → 𝑥 ∈ ℕ)
19 nnaddcl 12287 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑥 + 𝑁) ∈ ℕ)
2018, 2, 19syl2anr 597 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1...𝑊)) → (𝑥 + 𝑁) ∈ ℕ)
21 nnuz 12919 . . . . . . . . . . . . . . . . . 18 ℕ = (ℤ‘1)
2220, 21eleqtrdi 2849 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...𝑊)) → (𝑥 + 𝑁) ∈ (ℤ‘1))
23 vdwlem2.m . . . . . . . . . . . . . . . . . 18 (𝜑𝑀 ∈ (ℤ‘(𝑊 + 𝑁)))
24 elfzuz3 13558 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (1...𝑊) → 𝑊 ∈ (ℤ𝑥))
252nnzd 12638 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ ℤ)
26 eluzadd 12905 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ (ℤ𝑥) ∧ 𝑁 ∈ ℤ) → (𝑊 + 𝑁) ∈ (ℤ‘(𝑥 + 𝑁)))
2724, 25, 26syl2anr 597 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1...𝑊)) → (𝑊 + 𝑁) ∈ (ℤ‘(𝑥 + 𝑁)))
28 uztrn 12894 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ (ℤ‘(𝑊 + 𝑁)) ∧ (𝑊 + 𝑁) ∈ (ℤ‘(𝑥 + 𝑁))) → 𝑀 ∈ (ℤ‘(𝑥 + 𝑁)))
2923, 27, 28syl2an2r 685 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...𝑊)) → 𝑀 ∈ (ℤ‘(𝑥 + 𝑁)))
30 elfzuzb 13555 . . . . . . . . . . . . . . . . 17 ((𝑥 + 𝑁) ∈ (1...𝑀) ↔ ((𝑥 + 𝑁) ∈ (ℤ‘1) ∧ 𝑀 ∈ (ℤ‘(𝑥 + 𝑁))))
3122, 29, 30sylanbrc 583 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...𝑊)) → (𝑥 + 𝑁) ∈ (1...𝑀))
3231ralrimiva 3144 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑥 ∈ (1...𝑊)(𝑥 + 𝑁) ∈ (1...𝑀))
3332ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ∀𝑥 ∈ (1...𝑊)(𝑥 + 𝑁) ∈ (1...𝑀))
34 simplrr 778 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))
35 eqid 2735 . . . . . . . . . . . . . . . . . . . 20 (𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑚 · 𝑑))
36 oveq1 7438 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑚 → (𝑛 · 𝑑) = (𝑚 · 𝑑))
3736oveq2d 7447 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑚 → (𝑎 + (𝑛 · 𝑑)) = (𝑎 + (𝑚 · 𝑑)))
3837rspceeqv 3645 . . . . . . . . . . . . . . . . . . . 20 ((𝑚 ∈ (0...(𝐾 − 1)) ∧ (𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑚 · 𝑑))) → ∃𝑛 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑛 · 𝑑)))
3935, 38mpan2 691 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ (0...(𝐾 − 1)) → ∃𝑛 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑛 · 𝑑)))
4039adantl 481 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ∃𝑛 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑛 · 𝑑)))
41 vdwlem2.k . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐾 ∈ ℕ0)
4241ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) → 𝐾 ∈ ℕ0)
4342adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐾 ∈ ℕ0)
44 vdwapval 17007 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℕ0𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → ((𝑎 + (𝑚 · 𝑑)) ∈ (𝑎(AP‘𝐾)𝑑) ↔ ∃𝑛 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑛 · 𝑑))))
4543, 5, 12, 44syl3anc 1370 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑎 + (𝑚 · 𝑑)) ∈ (𝑎(AP‘𝐾)𝑑) ↔ ∃𝑛 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑛 · 𝑑))))
4640, 45mpbird 257 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑎 + (𝑚 · 𝑑)) ∈ (𝑎(AP‘𝐾)𝑑))
4734, 46sseldd 3996 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑎 + (𝑚 · 𝑑)) ∈ (𝐺 “ {𝑐}))
48 vdwlem2.f . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐹:(1...𝑀)⟶𝑅)
4948ffvelcdmda 7104 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑥 + 𝑁) ∈ (1...𝑀)) → (𝐹‘(𝑥 + 𝑁)) ∈ 𝑅)
5031, 49syldan 591 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...𝑊)) → (𝐹‘(𝑥 + 𝑁)) ∈ 𝑅)
51 vdwlem2.g . . . . . . . . . . . . . . . . . . . 20 𝐺 = (𝑥 ∈ (1...𝑊) ↦ (𝐹‘(𝑥 + 𝑁)))
5250, 51fmptd 7134 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐺:(1...𝑊)⟶𝑅)
5352ffnd 6738 . . . . . . . . . . . . . . . . . 18 (𝜑𝐺 Fn (1...𝑊))
5453ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐺 Fn (1...𝑊))
55 fniniseg 7080 . . . . . . . . . . . . . . . . 17 (𝐺 Fn (1...𝑊) → ((𝑎 + (𝑚 · 𝑑)) ∈ (𝐺 “ {𝑐}) ↔ ((𝑎 + (𝑚 · 𝑑)) ∈ (1...𝑊) ∧ (𝐺‘(𝑎 + (𝑚 · 𝑑))) = 𝑐)))
5654, 55syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑎 + (𝑚 · 𝑑)) ∈ (𝐺 “ {𝑐}) ↔ ((𝑎 + (𝑚 · 𝑑)) ∈ (1...𝑊) ∧ (𝐺‘(𝑎 + (𝑚 · 𝑑))) = 𝑐)))
5747, 56mpbid 232 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑎 + (𝑚 · 𝑑)) ∈ (1...𝑊) ∧ (𝐺‘(𝑎 + (𝑚 · 𝑑))) = 𝑐))
5857simpld 494 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑎 + (𝑚 · 𝑑)) ∈ (1...𝑊))
5917, 33, 58rspcdva 3623 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑎 + (𝑚 · 𝑑)) + 𝑁) ∈ (1...𝑀))
6015, 59eqeltrd 2839 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑎 + 𝑁) + (𝑚 · 𝑑)) ∈ (1...𝑀))
6115fveq2d 6911 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐹‘((𝑎 + 𝑁) + (𝑚 · 𝑑))) = (𝐹‘((𝑎 + (𝑚 · 𝑑)) + 𝑁)))
6216fveq2d 6911 . . . . . . . . . . . . . . 15 (𝑥 = (𝑎 + (𝑚 · 𝑑)) → (𝐹‘(𝑥 + 𝑁)) = (𝐹‘((𝑎 + (𝑚 · 𝑑)) + 𝑁)))
63 fvex 6920 . . . . . . . . . . . . . . 15 (𝐹‘((𝑎 + (𝑚 · 𝑑)) + 𝑁)) ∈ V
6462, 51, 63fvmpt 7016 . . . . . . . . . . . . . 14 ((𝑎 + (𝑚 · 𝑑)) ∈ (1...𝑊) → (𝐺‘(𝑎 + (𝑚 · 𝑑))) = (𝐹‘((𝑎 + (𝑚 · 𝑑)) + 𝑁)))
6558, 64syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐺‘(𝑎 + (𝑚 · 𝑑))) = (𝐹‘((𝑎 + (𝑚 · 𝑑)) + 𝑁)))
6657simprd 495 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐺‘(𝑎 + (𝑚 · 𝑑))) = 𝑐)
6761, 65, 663eqtr2d 2781 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐹‘((𝑎 + 𝑁) + (𝑚 · 𝑑))) = 𝑐)
6860, 67jca 511 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (((𝑎 + 𝑁) + (𝑚 · 𝑑)) ∈ (1...𝑀) ∧ (𝐹‘((𝑎 + 𝑁) + (𝑚 · 𝑑))) = 𝑐))
69 eleq1 2827 . . . . . . . . . . . 12 (𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑)) → (𝑥 ∈ (1...𝑀) ↔ ((𝑎 + 𝑁) + (𝑚 · 𝑑)) ∈ (1...𝑀)))
70 fveqeq2 6916 . . . . . . . . . . . 12 (𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑)) → ((𝐹𝑥) = 𝑐 ↔ (𝐹‘((𝑎 + 𝑁) + (𝑚 · 𝑑))) = 𝑐))
7169, 70anbi12d 632 . . . . . . . . . . 11 (𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑)) → ((𝑥 ∈ (1...𝑀) ∧ (𝐹𝑥) = 𝑐) ↔ (((𝑎 + 𝑁) + (𝑚 · 𝑑)) ∈ (1...𝑀) ∧ (𝐹‘((𝑎 + 𝑁) + (𝑚 · 𝑑))) = 𝑐)))
7268, 71syl5ibrcom 247 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑)) → (𝑥 ∈ (1...𝑀) ∧ (𝐹𝑥) = 𝑐)))
7372rexlimdva 3153 . . . . . . . . 9 (((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) → (∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑)) → (𝑥 ∈ (1...𝑀) ∧ (𝐹𝑥) = 𝑐)))
744adantr 480 . . . . . . . . . 10 (((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) → (𝑎 + 𝑁) ∈ ℕ)
75 simprl 771 . . . . . . . . . 10 (((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) → 𝑑 ∈ ℕ)
76 vdwapval 17007 . . . . . . . . . 10 ((𝐾 ∈ ℕ0 ∧ (𝑎 + 𝑁) ∈ ℕ ∧ 𝑑 ∈ ℕ) → (𝑥 ∈ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑))))
7742, 74, 75, 76syl3anc 1370 . . . . . . . . 9 (((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) → (𝑥 ∈ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑))))
7848ffnd 6738 . . . . . . . . . . 11 (𝜑𝐹 Fn (1...𝑀))
7978ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) → 𝐹 Fn (1...𝑀))
80 fniniseg 7080 . . . . . . . . . 10 (𝐹 Fn (1...𝑀) → (𝑥 ∈ (𝐹 “ {𝑐}) ↔ (𝑥 ∈ (1...𝑀) ∧ (𝐹𝑥) = 𝑐)))
8179, 80syl 17 . . . . . . . . 9 (((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) → (𝑥 ∈ (𝐹 “ {𝑐}) ↔ (𝑥 ∈ (1...𝑀) ∧ (𝐹𝑥) = 𝑐)))
8273, 77, 813imtr4d 294 . . . . . . . 8 (((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) → (𝑥 ∈ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) → 𝑥 ∈ (𝐹 “ {𝑐})))
8382ssrdv 4001 . . . . . . 7 (((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) → ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
8483expr 456 . . . . . 6 (((𝜑𝑎 ∈ ℕ) ∧ 𝑑 ∈ ℕ) → ((𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}) → ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
8584reximdva 3166 . . . . 5 ((𝜑𝑎 ∈ ℕ) → (∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}) → ∃𝑑 ∈ ℕ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
86 oveq1 7438 . . . . . . . 8 (𝑏 = (𝑎 + 𝑁) → (𝑏(AP‘𝐾)𝑑) = ((𝑎 + 𝑁)(AP‘𝐾)𝑑))
8786sseq1d 4027 . . . . . . 7 (𝑏 = (𝑎 + 𝑁) → ((𝑏(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
8887rexbidv 3177 . . . . . 6 (𝑏 = (𝑎 + 𝑁) → (∃𝑑 ∈ ℕ (𝑏(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ ∃𝑑 ∈ ℕ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
8988rspcev 3622 . . . . 5 (((𝑎 + 𝑁) ∈ ℕ ∧ ∃𝑑 ∈ ℕ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})) → ∃𝑏 ∈ ℕ ∃𝑑 ∈ ℕ (𝑏(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
904, 85, 89syl6an 684 . . . 4 ((𝜑𝑎 ∈ ℕ) → (∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}) → ∃𝑏 ∈ ℕ ∃𝑑 ∈ ℕ (𝑏(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
9190rexlimdva 3153 . . 3 (𝜑 → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}) → ∃𝑏 ∈ ℕ ∃𝑑 ∈ ℕ (𝑏(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
9291eximdv 1915 . 2 (𝜑 → (∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}) → ∃𝑐𝑏 ∈ ℕ ∃𝑑 ∈ ℕ (𝑏(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
93 ovex 7464 . . 3 (1...𝑊) ∈ V
9493, 41, 52vdwmc 17012 . 2 (𝜑 → (𝐾 MonoAP 𝐺 ↔ ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐})))
95 ovex 7464 . . 3 (1...𝑀) ∈ V
9695, 41, 48vdwmc 17012 . 2 (𝜑 → (𝐾 MonoAP 𝐹 ↔ ∃𝑐𝑏 ∈ ℕ ∃𝑑 ∈ ℕ (𝑏(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
9792, 94, 963imtr4d 294 1 (𝜑 → (𝐾 MonoAP 𝐺𝐾 MonoAP 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1776  wcel 2106  wral 3059  wrex 3068  wss 3963  {csn 4631   class class class wbr 5148  cmpt 5231  ccnv 5688  cima 5692   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  Fincfn 8984  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  cmin 11490  cn 12264  0cn0 12524  cz 12611  cuz 12876  ...cfz 13544  APcvdwa 16999   MonoAP cvdwm 17000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-vdwap 17002  df-vdwmc 17003
This theorem is referenced by:  vdwlem9  17023
  Copyright terms: Public domain W3C validator