MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vdwlem2 Structured version   Visualization version   GIF version

Theorem vdwlem2 16308
Description: Lemma for vdw 16320. (Contributed by Mario Carneiro, 12-Sep-2014.)
Hypotheses
Ref Expression
vdwlem2.r (𝜑𝑅 ∈ Fin)
vdwlem2.k (𝜑𝐾 ∈ ℕ0)
vdwlem2.w (𝜑𝑊 ∈ ℕ)
vdwlem2.n (𝜑𝑁 ∈ ℕ)
vdwlem2.f (𝜑𝐹:(1...𝑀)⟶𝑅)
vdwlem2.m (𝜑𝑀 ∈ (ℤ‘(𝑊 + 𝑁)))
vdwlem2.g 𝐺 = (𝑥 ∈ (1...𝑊) ↦ (𝐹‘(𝑥 + 𝑁)))
Assertion
Ref Expression
vdwlem2 (𝜑 → (𝐾 MonoAP 𝐺𝐾 MonoAP 𝐹))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐾   𝑥,𝑀   𝜑,𝑥   𝑥,𝐺   𝑥,𝑁   𝑥,𝑅   𝑥,𝑊

Proof of Theorem vdwlem2
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . 6 (𝑎 ∈ ℕ → 𝑎 ∈ ℕ)
2 vdwlem2.n . . . . . 6 (𝜑𝑁 ∈ ℕ)
3 nnaddcl 11648 . . . . . 6 ((𝑎 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑎 + 𝑁) ∈ ℕ)
41, 2, 3syl2anr 599 . . . . 5 ((𝜑𝑎 ∈ ℕ) → (𝑎 + 𝑁) ∈ ℕ)
5 simpllr 775 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑎 ∈ ℕ)
65nncnd 11641 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑎 ∈ ℂ)
72ad3antrrr 729 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑁 ∈ ℕ)
87nncnd 11641 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑁 ∈ ℂ)
9 elfznn0 12995 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ (0...(𝐾 − 1)) → 𝑚 ∈ ℕ0)
109adantl 485 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ ℕ0)
1110nn0cnd 11945 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑚 ∈ ℂ)
12 simplrl 776 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑑 ∈ ℕ)
1312nncnd 11641 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝑑 ∈ ℂ)
1411, 13mulcld 10650 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑚 · 𝑑) ∈ ℂ)
156, 8, 14add32d 10856 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑎 + 𝑁) + (𝑚 · 𝑑)) = ((𝑎 + (𝑚 · 𝑑)) + 𝑁))
16 oveq1 7142 . . . . . . . . . . . . . . 15 (𝑥 = (𝑎 + (𝑚 · 𝑑)) → (𝑥 + 𝑁) = ((𝑎 + (𝑚 · 𝑑)) + 𝑁))
1716eleq1d 2874 . . . . . . . . . . . . . 14 (𝑥 = (𝑎 + (𝑚 · 𝑑)) → ((𝑥 + 𝑁) ∈ (1...𝑀) ↔ ((𝑎 + (𝑚 · 𝑑)) + 𝑁) ∈ (1...𝑀)))
18 elfznn 12931 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (1...𝑊) → 𝑥 ∈ ℕ)
19 nnaddcl 11648 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑥 + 𝑁) ∈ ℕ)
2018, 2, 19syl2anr 599 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1...𝑊)) → (𝑥 + 𝑁) ∈ ℕ)
21 nnuz 12269 . . . . . . . . . . . . . . . . . 18 ℕ = (ℤ‘1)
2220, 21eleqtrdi 2900 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...𝑊)) → (𝑥 + 𝑁) ∈ (ℤ‘1))
23 vdwlem2.m . . . . . . . . . . . . . . . . . 18 (𝜑𝑀 ∈ (ℤ‘(𝑊 + 𝑁)))
24 elfzuz3 12899 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ (1...𝑊) → 𝑊 ∈ (ℤ𝑥))
252nnzd 12074 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑁 ∈ ℤ)
26 eluzadd 12261 . . . . . . . . . . . . . . . . . . 19 ((𝑊 ∈ (ℤ𝑥) ∧ 𝑁 ∈ ℤ) → (𝑊 + 𝑁) ∈ (ℤ‘(𝑥 + 𝑁)))
2724, 25, 26syl2anr 599 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (1...𝑊)) → (𝑊 + 𝑁) ∈ (ℤ‘(𝑥 + 𝑁)))
28 uztrn 12249 . . . . . . . . . . . . . . . . . 18 ((𝑀 ∈ (ℤ‘(𝑊 + 𝑁)) ∧ (𝑊 + 𝑁) ∈ (ℤ‘(𝑥 + 𝑁))) → 𝑀 ∈ (ℤ‘(𝑥 + 𝑁)))
2923, 27, 28syl2an2r 684 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ (1...𝑊)) → 𝑀 ∈ (ℤ‘(𝑥 + 𝑁)))
30 elfzuzb 12896 . . . . . . . . . . . . . . . . 17 ((𝑥 + 𝑁) ∈ (1...𝑀) ↔ ((𝑥 + 𝑁) ∈ (ℤ‘1) ∧ 𝑀 ∈ (ℤ‘(𝑥 + 𝑁))))
3122, 29, 30sylanbrc 586 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ (1...𝑊)) → (𝑥 + 𝑁) ∈ (1...𝑀))
3231ralrimiva 3149 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑥 ∈ (1...𝑊)(𝑥 + 𝑁) ∈ (1...𝑀))
3332ad3antrrr 729 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ∀𝑥 ∈ (1...𝑊)(𝑥 + 𝑁) ∈ (1...𝑀))
34 simplrr 777 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))
35 eqid 2798 . . . . . . . . . . . . . . . . . . . 20 (𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑚 · 𝑑))
36 oveq1 7142 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 = 𝑚 → (𝑛 · 𝑑) = (𝑚 · 𝑑))
3736oveq2d 7151 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 = 𝑚 → (𝑎 + (𝑛 · 𝑑)) = (𝑎 + (𝑚 · 𝑑)))
3837rspceeqv 3586 . . . . . . . . . . . . . . . . . . . 20 ((𝑚 ∈ (0...(𝐾 − 1)) ∧ (𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑚 · 𝑑))) → ∃𝑛 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑛 · 𝑑)))
3935, 38mpan2 690 . . . . . . . . . . . . . . . . . . 19 (𝑚 ∈ (0...(𝐾 − 1)) → ∃𝑛 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑛 · 𝑑)))
4039adantl 485 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ∃𝑛 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑛 · 𝑑)))
41 vdwlem2.k . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐾 ∈ ℕ0)
4241ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) → 𝐾 ∈ ℕ0)
4342adantr 484 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐾 ∈ ℕ0)
44 vdwapval 16299 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℕ0𝑎 ∈ ℕ ∧ 𝑑 ∈ ℕ) → ((𝑎 + (𝑚 · 𝑑)) ∈ (𝑎(AP‘𝐾)𝑑) ↔ ∃𝑛 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑛 · 𝑑))))
4543, 5, 12, 44syl3anc 1368 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑎 + (𝑚 · 𝑑)) ∈ (𝑎(AP‘𝐾)𝑑) ↔ ∃𝑛 ∈ (0...(𝐾 − 1))(𝑎 + (𝑚 · 𝑑)) = (𝑎 + (𝑛 · 𝑑))))
4640, 45mpbird 260 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑎 + (𝑚 · 𝑑)) ∈ (𝑎(AP‘𝐾)𝑑))
4734, 46sseldd 3916 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑎 + (𝑚 · 𝑑)) ∈ (𝐺 “ {𝑐}))
48 vdwlem2.f . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐹:(1...𝑀)⟶𝑅)
4948ffvelrnda 6828 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑥 + 𝑁) ∈ (1...𝑀)) → (𝐹‘(𝑥 + 𝑁)) ∈ 𝑅)
5031, 49syldan 594 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 ∈ (1...𝑊)) → (𝐹‘(𝑥 + 𝑁)) ∈ 𝑅)
51 vdwlem2.g . . . . . . . . . . . . . . . . . . . 20 𝐺 = (𝑥 ∈ (1...𝑊) ↦ (𝐹‘(𝑥 + 𝑁)))
5250, 51fmptd 6855 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐺:(1...𝑊)⟶𝑅)
5352ffnd 6488 . . . . . . . . . . . . . . . . . 18 (𝜑𝐺 Fn (1...𝑊))
5453ad3antrrr 729 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → 𝐺 Fn (1...𝑊))
55 fniniseg 6807 . . . . . . . . . . . . . . . . 17 (𝐺 Fn (1...𝑊) → ((𝑎 + (𝑚 · 𝑑)) ∈ (𝐺 “ {𝑐}) ↔ ((𝑎 + (𝑚 · 𝑑)) ∈ (1...𝑊) ∧ (𝐺‘(𝑎 + (𝑚 · 𝑑))) = 𝑐)))
5654, 55syl 17 . . . . . . . . . . . . . . . 16 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑎 + (𝑚 · 𝑑)) ∈ (𝐺 “ {𝑐}) ↔ ((𝑎 + (𝑚 · 𝑑)) ∈ (1...𝑊) ∧ (𝐺‘(𝑎 + (𝑚 · 𝑑))) = 𝑐)))
5747, 56mpbid 235 . . . . . . . . . . . . . . 15 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑎 + (𝑚 · 𝑑)) ∈ (1...𝑊) ∧ (𝐺‘(𝑎 + (𝑚 · 𝑑))) = 𝑐))
5857simpld 498 . . . . . . . . . . . . . 14 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑎 + (𝑚 · 𝑑)) ∈ (1...𝑊))
5917, 33, 58rspcdva 3573 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑎 + (𝑚 · 𝑑)) + 𝑁) ∈ (1...𝑀))
6015, 59eqeltrd 2890 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → ((𝑎 + 𝑁) + (𝑚 · 𝑑)) ∈ (1...𝑀))
6115fveq2d 6649 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐹‘((𝑎 + 𝑁) + (𝑚 · 𝑑))) = (𝐹‘((𝑎 + (𝑚 · 𝑑)) + 𝑁)))
6216fveq2d 6649 . . . . . . . . . . . . . . 15 (𝑥 = (𝑎 + (𝑚 · 𝑑)) → (𝐹‘(𝑥 + 𝑁)) = (𝐹‘((𝑎 + (𝑚 · 𝑑)) + 𝑁)))
63 fvex 6658 . . . . . . . . . . . . . . 15 (𝐹‘((𝑎 + (𝑚 · 𝑑)) + 𝑁)) ∈ V
6462, 51, 63fvmpt 6745 . . . . . . . . . . . . . 14 ((𝑎 + (𝑚 · 𝑑)) ∈ (1...𝑊) → (𝐺‘(𝑎 + (𝑚 · 𝑑))) = (𝐹‘((𝑎 + (𝑚 · 𝑑)) + 𝑁)))
6558, 64syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐺‘(𝑎 + (𝑚 · 𝑑))) = (𝐹‘((𝑎 + (𝑚 · 𝑑)) + 𝑁)))
6657simprd 499 . . . . . . . . . . . . 13 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐺‘(𝑎 + (𝑚 · 𝑑))) = 𝑐)
6761, 65, 663eqtr2d 2839 . . . . . . . . . . . 12 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝐹‘((𝑎 + 𝑁) + (𝑚 · 𝑑))) = 𝑐)
6860, 67jca 515 . . . . . . . . . . 11 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (((𝑎 + 𝑁) + (𝑚 · 𝑑)) ∈ (1...𝑀) ∧ (𝐹‘((𝑎 + 𝑁) + (𝑚 · 𝑑))) = 𝑐))
69 eleq1 2877 . . . . . . . . . . . 12 (𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑)) → (𝑥 ∈ (1...𝑀) ↔ ((𝑎 + 𝑁) + (𝑚 · 𝑑)) ∈ (1...𝑀)))
70 fveqeq2 6654 . . . . . . . . . . . 12 (𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑)) → ((𝐹𝑥) = 𝑐 ↔ (𝐹‘((𝑎 + 𝑁) + (𝑚 · 𝑑))) = 𝑐))
7169, 70anbi12d 633 . . . . . . . . . . 11 (𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑)) → ((𝑥 ∈ (1...𝑀) ∧ (𝐹𝑥) = 𝑐) ↔ (((𝑎 + 𝑁) + (𝑚 · 𝑑)) ∈ (1...𝑀) ∧ (𝐹‘((𝑎 + 𝑁) + (𝑚 · 𝑑))) = 𝑐)))
7268, 71syl5ibrcom 250 . . . . . . . . . 10 ((((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) ∧ 𝑚 ∈ (0...(𝐾 − 1))) → (𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑)) → (𝑥 ∈ (1...𝑀) ∧ (𝐹𝑥) = 𝑐)))
7372rexlimdva 3243 . . . . . . . . 9 (((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) → (∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑)) → (𝑥 ∈ (1...𝑀) ∧ (𝐹𝑥) = 𝑐)))
744adantr 484 . . . . . . . . . 10 (((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) → (𝑎 + 𝑁) ∈ ℕ)
75 simprl 770 . . . . . . . . . 10 (((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) → 𝑑 ∈ ℕ)
76 vdwapval 16299 . . . . . . . . . 10 ((𝐾 ∈ ℕ0 ∧ (𝑎 + 𝑁) ∈ ℕ ∧ 𝑑 ∈ ℕ) → (𝑥 ∈ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑))))
7742, 74, 75, 76syl3anc 1368 . . . . . . . . 9 (((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) → (𝑥 ∈ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ↔ ∃𝑚 ∈ (0...(𝐾 − 1))𝑥 = ((𝑎 + 𝑁) + (𝑚 · 𝑑))))
7848ffnd 6488 . . . . . . . . . . 11 (𝜑𝐹 Fn (1...𝑀))
7978ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) → 𝐹 Fn (1...𝑀))
80 fniniseg 6807 . . . . . . . . . 10 (𝐹 Fn (1...𝑀) → (𝑥 ∈ (𝐹 “ {𝑐}) ↔ (𝑥 ∈ (1...𝑀) ∧ (𝐹𝑥) = 𝑐)))
8179, 80syl 17 . . . . . . . . 9 (((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) → (𝑥 ∈ (𝐹 “ {𝑐}) ↔ (𝑥 ∈ (1...𝑀) ∧ (𝐹𝑥) = 𝑐)))
8273, 77, 813imtr4d 297 . . . . . . . 8 (((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) → (𝑥 ∈ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) → 𝑥 ∈ (𝐹 “ {𝑐})))
8382ssrdv 3921 . . . . . . 7 (((𝜑𝑎 ∈ ℕ) ∧ (𝑑 ∈ ℕ ∧ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}))) → ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
8483expr 460 . . . . . 6 (((𝜑𝑎 ∈ ℕ) ∧ 𝑑 ∈ ℕ) → ((𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}) → ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
8584reximdva 3233 . . . . 5 ((𝜑𝑎 ∈ ℕ) → (∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}) → ∃𝑑 ∈ ℕ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
86 oveq1 7142 . . . . . . . 8 (𝑏 = (𝑎 + 𝑁) → (𝑏(AP‘𝐾)𝑑) = ((𝑎 + 𝑁)(AP‘𝐾)𝑑))
8786sseq1d 3946 . . . . . . 7 (𝑏 = (𝑎 + 𝑁) → ((𝑏(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
8887rexbidv 3256 . . . . . 6 (𝑏 = (𝑎 + 𝑁) → (∃𝑑 ∈ ℕ (𝑏(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}) ↔ ∃𝑑 ∈ ℕ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
8988rspcev 3571 . . . . 5 (((𝑎 + 𝑁) ∈ ℕ ∧ ∃𝑑 ∈ ℕ ((𝑎 + 𝑁)(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})) → ∃𝑏 ∈ ℕ ∃𝑑 ∈ ℕ (𝑏(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐}))
904, 85, 89syl6an 683 . . . 4 ((𝜑𝑎 ∈ ℕ) → (∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}) → ∃𝑏 ∈ ℕ ∃𝑑 ∈ ℕ (𝑏(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
9190rexlimdva 3243 . . 3 (𝜑 → (∃𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}) → ∃𝑏 ∈ ℕ ∃𝑑 ∈ ℕ (𝑏(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
9291eximdv 1918 . 2 (𝜑 → (∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐}) → ∃𝑐𝑏 ∈ ℕ ∃𝑑 ∈ ℕ (𝑏(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
93 ovex 7168 . . 3 (1...𝑊) ∈ V
9493, 41, 52vdwmc 16304 . 2 (𝜑 → (𝐾 MonoAP 𝐺 ↔ ∃𝑐𝑎 ∈ ℕ ∃𝑑 ∈ ℕ (𝑎(AP‘𝐾)𝑑) ⊆ (𝐺 “ {𝑐})))
95 ovex 7168 . . 3 (1...𝑀) ∈ V
9695, 41, 48vdwmc 16304 . 2 (𝜑 → (𝐾 MonoAP 𝐹 ↔ ∃𝑐𝑏 ∈ ℕ ∃𝑑 ∈ ℕ (𝑏(AP‘𝐾)𝑑) ⊆ (𝐹 “ {𝑐})))
9792, 94, 963imtr4d 297 1 (𝜑 → (𝐾 MonoAP 𝐺𝐾 MonoAP 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2111  wral 3106  wrex 3107  wss 3881  {csn 4525   class class class wbr 5030  cmpt 5110  ccnv 5518  cima 5522   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  Fincfn 8492  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  cmin 10859  cn 11625  0cn0 11885  cz 11969  cuz 12231  ...cfz 12885  APcvdwa 16291   MonoAP cvdwm 16292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-vdwap 16294  df-vdwmc 16295
This theorem is referenced by:  vdwlem9  16315
  Copyright terms: Public domain W3C validator