![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > winafpi | Structured version Visualization version GIF version |
Description: This theorem, which states that a nontrivial inaccessible cardinal is its own aleph number, is stated here in inference form, where the assumptions are in the hypotheses rather than an antecedent. Often, we use dedth 4362 to turn this type of statement into the closed form statement winafp 9834, but in this case, since it is consistent with ZFC that there are no nontrivial inaccessible cardinals, it is not possible to prove winafp 9834 using this theorem and dedth 4362, in ZFC. (You can prove this if you use ax-groth 9960, though.) (Contributed by Mario Carneiro, 28-May-2014.) |
Ref | Expression |
---|---|
winafp.1 | ⊢ 𝐴 ∈ Inaccw |
winafp.2 | ⊢ 𝐴 ≠ ω |
Ref | Expression |
---|---|
winafpi | ⊢ (ℵ‘𝐴) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | winafp.1 | . 2 ⊢ 𝐴 ∈ Inaccw | |
2 | winafp.2 | . 2 ⊢ 𝐴 ≠ ω | |
3 | winafp 9834 | . 2 ⊢ ((𝐴 ∈ Inaccw ∧ 𝐴 ≠ ω) → (ℵ‘𝐴) = 𝐴) | |
4 | 1, 2, 3 | mp2an 685 | 1 ⊢ (ℵ‘𝐴) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1658 ∈ wcel 2166 ≠ wne 2999 ‘cfv 6123 ωcom 7326 ℵcale 9075 Inaccwcwina 9819 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-inf2 8815 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-int 4698 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-se 5302 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-isom 6132 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-om 7327 df-1st 7428 df-2nd 7429 df-wrecs 7672 df-smo 7709 df-recs 7734 df-rdg 7772 df-er 8009 df-map 8124 df-en 8223 df-dom 8224 df-sdom 8225 df-fin 8226 df-oi 8684 df-har 8732 df-card 9078 df-aleph 9079 df-cf 9080 df-acn 9081 df-wina 9821 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |