MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  winafpi Structured version   Visualization version   GIF version

Theorem winafpi 9835
Description: This theorem, which states that a nontrivial inaccessible cardinal is its own aleph number, is stated here in inference form, where the assumptions are in the hypotheses rather than an antecedent. Often, we use dedth 4362 to turn this type of statement into the closed form statement winafp 9834, but in this case, since it is consistent with ZFC that there are no nontrivial inaccessible cardinals, it is not possible to prove winafp 9834 using this theorem and dedth 4362, in ZFC. (You can prove this if you use ax-groth 9960, though.) (Contributed by Mario Carneiro, 28-May-2014.)
Hypotheses
Ref Expression
winafp.1 𝐴 ∈ Inaccw
winafp.2 𝐴 ≠ ω
Assertion
Ref Expression
winafpi (ℵ‘𝐴) = 𝐴

Proof of Theorem winafpi
StepHypRef Expression
1 winafp.1 . 2 𝐴 ∈ Inaccw
2 winafp.2 . 2 𝐴 ≠ ω
3 winafp 9834 . 2 ((𝐴 ∈ Inaccw𝐴 ≠ ω) → (ℵ‘𝐴) = 𝐴)
41, 2, 3mp2an 685 1 (ℵ‘𝐴) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1658  wcel 2166  wne 2999  cfv 6123  ωcom 7326  cale 9075  Inaccwcwina 9819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-smo 7709  df-recs 7734  df-rdg 7772  df-er 8009  df-map 8124  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-oi 8684  df-har 8732  df-card 9078  df-aleph 9079  df-cf 9080  df-acn 9081  df-wina 9821
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator