MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xlemul1 Structured version   Visualization version   GIF version

Theorem xlemul1 13024
Description: Extended real version of lemul1 11827. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xlemul1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐴𝐵 ↔ (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶)))

Proof of Theorem xlemul1
StepHypRef Expression
1 rpxr 12739 . . . 4 (𝐶 ∈ ℝ+𝐶 ∈ ℝ*)
2 rpge0 12743 . . . 4 (𝐶 ∈ ℝ+ → 0 ≤ 𝐶)
31, 2jca 512 . . 3 (𝐶 ∈ ℝ+ → (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶))
4 xlemul1a 13022 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))
54ex 413 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → (𝐴𝐵 → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶)))
63, 5syl3an3 1164 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐴𝐵 → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶)))
7 simp1 1135 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → 𝐴 ∈ ℝ*)
813ad2ant3 1134 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ*)
9 xmulcl 13007 . . . . 5 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ·e 𝐶) ∈ ℝ*)
107, 8, 9syl2anc 584 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐴 ·e 𝐶) ∈ ℝ*)
11 simp2 1136 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → 𝐵 ∈ ℝ*)
12 xmulcl 13007 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 ·e 𝐶) ∈ ℝ*)
1311, 8, 12syl2anc 584 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐵 ·e 𝐶) ∈ ℝ*)
14 rpreccl 12756 . . . . . 6 (𝐶 ∈ ℝ+ → (1 / 𝐶) ∈ ℝ+)
15143ad2ant3 1134 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (1 / 𝐶) ∈ ℝ+)
16 rpxr 12739 . . . . 5 ((1 / 𝐶) ∈ ℝ+ → (1 / 𝐶) ∈ ℝ*)
1715, 16syl 17 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (1 / 𝐶) ∈ ℝ*)
18 rpge0 12743 . . . . 5 ((1 / 𝐶) ∈ ℝ+ → 0 ≤ (1 / 𝐶))
1915, 18syl 17 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → 0 ≤ (1 / 𝐶))
20 xlemul1a 13022 . . . . 5 ((((𝐴 ·e 𝐶) ∈ ℝ* ∧ (𝐵 ·e 𝐶) ∈ ℝ* ∧ ((1 / 𝐶) ∈ ℝ* ∧ 0 ≤ (1 / 𝐶))) ∧ (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶)) → ((𝐴 ·e 𝐶) ·e (1 / 𝐶)) ≤ ((𝐵 ·e 𝐶) ·e (1 / 𝐶)))
2120ex 413 . . . 4 (((𝐴 ·e 𝐶) ∈ ℝ* ∧ (𝐵 ·e 𝐶) ∈ ℝ* ∧ ((1 / 𝐶) ∈ ℝ* ∧ 0 ≤ (1 / 𝐶))) → ((𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶) → ((𝐴 ·e 𝐶) ·e (1 / 𝐶)) ≤ ((𝐵 ·e 𝐶) ·e (1 / 𝐶))))
2210, 13, 17, 19, 21syl112anc 1373 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → ((𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶) → ((𝐴 ·e 𝐶) ·e (1 / 𝐶)) ≤ ((𝐵 ·e 𝐶) ·e (1 / 𝐶))))
23 xmulass 13021 . . . . . 6 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ* ∧ (1 / 𝐶) ∈ ℝ*) → ((𝐴 ·e 𝐶) ·e (1 / 𝐶)) = (𝐴 ·e (𝐶 ·e (1 / 𝐶))))
247, 8, 17, 23syl3anc 1370 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → ((𝐴 ·e 𝐶) ·e (1 / 𝐶)) = (𝐴 ·e (𝐶 ·e (1 / 𝐶))))
25 rpre 12738 . . . . . . . . 9 (𝐶 ∈ ℝ+𝐶 ∈ ℝ)
26253ad2ant3 1134 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ)
2715rpred 12772 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (1 / 𝐶) ∈ ℝ)
28 rexmul 13005 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) → (𝐶 ·e (1 / 𝐶)) = (𝐶 · (1 / 𝐶)))
2926, 27, 28syl2anc 584 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐶 ·e (1 / 𝐶)) = (𝐶 · (1 / 𝐶)))
3026recnd 11003 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → 𝐶 ∈ ℂ)
31 rpne0 12746 . . . . . . . . 9 (𝐶 ∈ ℝ+𝐶 ≠ 0)
32313ad2ant3 1134 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → 𝐶 ≠ 0)
3330, 32recidd 11746 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐶 · (1 / 𝐶)) = 1)
3429, 33eqtrd 2778 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐶 ·e (1 / 𝐶)) = 1)
3534oveq2d 7291 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐴 ·e (𝐶 ·e (1 / 𝐶))) = (𝐴 ·e 1))
36 xmulid1 13013 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴 ·e 1) = 𝐴)
377, 36syl 17 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐴 ·e 1) = 𝐴)
3824, 35, 373eqtrd 2782 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → ((𝐴 ·e 𝐶) ·e (1 / 𝐶)) = 𝐴)
39 xmulass 13021 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ* ∧ (1 / 𝐶) ∈ ℝ*) → ((𝐵 ·e 𝐶) ·e (1 / 𝐶)) = (𝐵 ·e (𝐶 ·e (1 / 𝐶))))
4011, 8, 17, 39syl3anc 1370 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → ((𝐵 ·e 𝐶) ·e (1 / 𝐶)) = (𝐵 ·e (𝐶 ·e (1 / 𝐶))))
4134oveq2d 7291 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐵 ·e (𝐶 ·e (1 / 𝐶))) = (𝐵 ·e 1))
42 xmulid1 13013 . . . . . 6 (𝐵 ∈ ℝ* → (𝐵 ·e 1) = 𝐵)
4311, 42syl 17 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐵 ·e 1) = 𝐵)
4440, 41, 433eqtrd 2782 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → ((𝐵 ·e 𝐶) ·e (1 / 𝐶)) = 𝐵)
4538, 44breq12d 5087 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (((𝐴 ·e 𝐶) ·e (1 / 𝐶)) ≤ ((𝐵 ·e 𝐶) ·e (1 / 𝐶)) ↔ 𝐴𝐵))
4622, 45sylibd 238 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → ((𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶) → 𝐴𝐵))
476, 46impbid 211 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐴𝐵 ↔ (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   · cmul 10876  *cxr 11008  cle 11010   / cdiv 11632  +crp 12730   ·e cxmu 12847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-rp 12731  df-xneg 12848  df-xmul 12850
This theorem is referenced by:  xlemul2  13025  xltmul1  13026  nmoleub2lem  24277  xrmulc1cn  31880
  Copyright terms: Public domain W3C validator