MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xlemul1 Structured version   Visualization version   GIF version

Theorem xlemul1 13189
Description: Extended real version of lemul1 11973. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xlemul1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐴𝐵 ↔ (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶)))

Proof of Theorem xlemul1
StepHypRef Expression
1 rpxr 12900 . . . 4 (𝐶 ∈ ℝ+𝐶 ∈ ℝ*)
2 rpge0 12904 . . . 4 (𝐶 ∈ ℝ+ → 0 ≤ 𝐶)
31, 2jca 511 . . 3 (𝐶 ∈ ℝ+ → (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶))
4 xlemul1a 13187 . . . 4 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))
54ex 412 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ (𝐶 ∈ ℝ* ∧ 0 ≤ 𝐶)) → (𝐴𝐵 → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶)))
63, 5syl3an3 1165 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐴𝐵 → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶)))
7 simp1 1136 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → 𝐴 ∈ ℝ*)
813ad2ant3 1135 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ*)
9 xmulcl 13172 . . . . 5 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ·e 𝐶) ∈ ℝ*)
107, 8, 9syl2anc 584 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐴 ·e 𝐶) ∈ ℝ*)
11 simp2 1137 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → 𝐵 ∈ ℝ*)
12 xmulcl 13172 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 ·e 𝐶) ∈ ℝ*)
1311, 8, 12syl2anc 584 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐵 ·e 𝐶) ∈ ℝ*)
14 rpreccl 12918 . . . . . 6 (𝐶 ∈ ℝ+ → (1 / 𝐶) ∈ ℝ+)
15143ad2ant3 1135 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (1 / 𝐶) ∈ ℝ+)
16 rpxr 12900 . . . . 5 ((1 / 𝐶) ∈ ℝ+ → (1 / 𝐶) ∈ ℝ*)
1715, 16syl 17 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (1 / 𝐶) ∈ ℝ*)
18 rpge0 12904 . . . . 5 ((1 / 𝐶) ∈ ℝ+ → 0 ≤ (1 / 𝐶))
1915, 18syl 17 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → 0 ≤ (1 / 𝐶))
20 xlemul1a 13187 . . . . 5 ((((𝐴 ·e 𝐶) ∈ ℝ* ∧ (𝐵 ·e 𝐶) ∈ ℝ* ∧ ((1 / 𝐶) ∈ ℝ* ∧ 0 ≤ (1 / 𝐶))) ∧ (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶)) → ((𝐴 ·e 𝐶) ·e (1 / 𝐶)) ≤ ((𝐵 ·e 𝐶) ·e (1 / 𝐶)))
2120ex 412 . . . 4 (((𝐴 ·e 𝐶) ∈ ℝ* ∧ (𝐵 ·e 𝐶) ∈ ℝ* ∧ ((1 / 𝐶) ∈ ℝ* ∧ 0 ≤ (1 / 𝐶))) → ((𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶) → ((𝐴 ·e 𝐶) ·e (1 / 𝐶)) ≤ ((𝐵 ·e 𝐶) ·e (1 / 𝐶))))
2210, 13, 17, 19, 21syl112anc 1376 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → ((𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶) → ((𝐴 ·e 𝐶) ·e (1 / 𝐶)) ≤ ((𝐵 ·e 𝐶) ·e (1 / 𝐶))))
23 xmulass 13186 . . . . . 6 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ* ∧ (1 / 𝐶) ∈ ℝ*) → ((𝐴 ·e 𝐶) ·e (1 / 𝐶)) = (𝐴 ·e (𝐶 ·e (1 / 𝐶))))
247, 8, 17, 23syl3anc 1373 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → ((𝐴 ·e 𝐶) ·e (1 / 𝐶)) = (𝐴 ·e (𝐶 ·e (1 / 𝐶))))
25 rpre 12899 . . . . . . . . 9 (𝐶 ∈ ℝ+𝐶 ∈ ℝ)
26253ad2ant3 1135 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ)
2715rpred 12934 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (1 / 𝐶) ∈ ℝ)
28 rexmul 13170 . . . . . . . 8 ((𝐶 ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) → (𝐶 ·e (1 / 𝐶)) = (𝐶 · (1 / 𝐶)))
2926, 27, 28syl2anc 584 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐶 ·e (1 / 𝐶)) = (𝐶 · (1 / 𝐶)))
3026recnd 11140 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → 𝐶 ∈ ℂ)
31 rpne0 12907 . . . . . . . . 9 (𝐶 ∈ ℝ+𝐶 ≠ 0)
32313ad2ant3 1135 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → 𝐶 ≠ 0)
3330, 32recidd 11892 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐶 · (1 / 𝐶)) = 1)
3429, 33eqtrd 2766 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐶 ·e (1 / 𝐶)) = 1)
3534oveq2d 7362 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐴 ·e (𝐶 ·e (1 / 𝐶))) = (𝐴 ·e 1))
36 xmulrid 13178 . . . . . 6 (𝐴 ∈ ℝ* → (𝐴 ·e 1) = 𝐴)
377, 36syl 17 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐴 ·e 1) = 𝐴)
3824, 35, 373eqtrd 2770 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → ((𝐴 ·e 𝐶) ·e (1 / 𝐶)) = 𝐴)
39 xmulass 13186 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ* ∧ (1 / 𝐶) ∈ ℝ*) → ((𝐵 ·e 𝐶) ·e (1 / 𝐶)) = (𝐵 ·e (𝐶 ·e (1 / 𝐶))))
4011, 8, 17, 39syl3anc 1373 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → ((𝐵 ·e 𝐶) ·e (1 / 𝐶)) = (𝐵 ·e (𝐶 ·e (1 / 𝐶))))
4134oveq2d 7362 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐵 ·e (𝐶 ·e (1 / 𝐶))) = (𝐵 ·e 1))
42 xmulrid 13178 . . . . . 6 (𝐵 ∈ ℝ* → (𝐵 ·e 1) = 𝐵)
4311, 42syl 17 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐵 ·e 1) = 𝐵)
4440, 41, 433eqtrd 2770 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → ((𝐵 ·e 𝐶) ·e (1 / 𝐶)) = 𝐵)
4538, 44breq12d 5102 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (((𝐴 ·e 𝐶) ·e (1 / 𝐶)) ≤ ((𝐵 ·e 𝐶) ·e (1 / 𝐶)) ↔ 𝐴𝐵))
4622, 45sylibd 239 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → ((𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶) → 𝐴𝐵))
476, 46impbid 212 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ+) → (𝐴𝐵 ↔ (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5089  (class class class)co 7346  cr 11005  0cc0 11006  1c1 11007   · cmul 11011  *cxr 11145  cle 11147   / cdiv 11774  +crp 12890   ·e cxmu 13010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-rp 12891  df-xneg 13011  df-xmul 13013
This theorem is referenced by:  xlemul2  13190  xltmul1  13191  nmoleub2lem  25041  xrmulc1cn  33943
  Copyright terms: Public domain W3C validator