Proof of Theorem xlemul1
Step | Hyp | Ref
| Expression |
1 | | rpxr 12739 |
. . . 4
⊢ (𝐶 ∈ ℝ+
→ 𝐶 ∈
ℝ*) |
2 | | rpge0 12743 |
. . . 4
⊢ (𝐶 ∈ ℝ+
→ 0 ≤ 𝐶) |
3 | 1, 2 | jca 512 |
. . 3
⊢ (𝐶 ∈ ℝ+
→ (𝐶 ∈
ℝ* ∧ 0 ≤ 𝐶)) |
4 | | xlemul1a 13022 |
. . . 4
⊢ (((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐶 ∈ ℝ* ∧ 0 ≤
𝐶)) ∧ 𝐴 ≤ 𝐵) → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶)) |
5 | 4 | ex 413 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ (𝐶 ∈ ℝ* ∧ 0 ≤
𝐶)) → (𝐴 ≤ 𝐵 → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))) |
6 | 3, 5 | syl3an3 1164 |
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ+) → (𝐴 ≤ 𝐵 → (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))) |
7 | | simp1 1135 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ+) → 𝐴 ∈
ℝ*) |
8 | 1 | 3ad2ant3 1134 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ+) → 𝐶 ∈
ℝ*) |
9 | | xmulcl 13007 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) → (𝐴 ·e 𝐶) ∈
ℝ*) |
10 | 7, 8, 9 | syl2anc 584 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ+) → (𝐴 ·e 𝐶) ∈
ℝ*) |
11 | | simp2 1136 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ+) → 𝐵 ∈
ℝ*) |
12 | | xmulcl 13007 |
. . . . 5
⊢ ((𝐵 ∈ ℝ*
∧ 𝐶 ∈
ℝ*) → (𝐵 ·e 𝐶) ∈
ℝ*) |
13 | 11, 8, 12 | syl2anc 584 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ+) → (𝐵 ·e 𝐶) ∈
ℝ*) |
14 | | rpreccl 12756 |
. . . . . 6
⊢ (𝐶 ∈ ℝ+
→ (1 / 𝐶) ∈
ℝ+) |
15 | 14 | 3ad2ant3 1134 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ+) → (1 / 𝐶) ∈
ℝ+) |
16 | | rpxr 12739 |
. . . . 5
⊢ ((1 /
𝐶) ∈
ℝ+ → (1 / 𝐶) ∈
ℝ*) |
17 | 15, 16 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ+) → (1 / 𝐶) ∈
ℝ*) |
18 | | rpge0 12743 |
. . . . 5
⊢ ((1 /
𝐶) ∈
ℝ+ → 0 ≤ (1 / 𝐶)) |
19 | 15, 18 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ+) → 0 ≤ (1 / 𝐶)) |
20 | | xlemul1a 13022 |
. . . . 5
⊢ ((((𝐴 ·e 𝐶) ∈ ℝ*
∧ (𝐵
·e 𝐶)
∈ ℝ* ∧ ((1 / 𝐶) ∈ ℝ* ∧ 0 ≤ (1
/ 𝐶))) ∧ (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶)) → ((𝐴 ·e 𝐶) ·e (1 / 𝐶)) ≤ ((𝐵 ·e 𝐶) ·e (1 / 𝐶))) |
21 | 20 | ex 413 |
. . . 4
⊢ (((𝐴 ·e 𝐶) ∈ ℝ*
∧ (𝐵
·e 𝐶)
∈ ℝ* ∧ ((1 / 𝐶) ∈ ℝ* ∧ 0 ≤ (1
/ 𝐶))) → ((𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶) → ((𝐴 ·e 𝐶) ·e (1 / 𝐶)) ≤ ((𝐵 ·e 𝐶) ·e (1 / 𝐶)))) |
22 | 10, 13, 17, 19, 21 | syl112anc 1373 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ+) → ((𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶) → ((𝐴 ·e 𝐶) ·e (1 / 𝐶)) ≤ ((𝐵 ·e 𝐶) ·e (1 / 𝐶)))) |
23 | | xmulass 13021 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐶 ∈
ℝ* ∧ (1 / 𝐶) ∈ ℝ*) → ((𝐴 ·e 𝐶) ·e (1 /
𝐶)) = (𝐴 ·e (𝐶 ·e (1 / 𝐶)))) |
24 | 7, 8, 17, 23 | syl3anc 1370 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ+) → ((𝐴 ·e 𝐶) ·e (1 / 𝐶)) = (𝐴 ·e (𝐶 ·e (1 / 𝐶)))) |
25 | | rpre 12738 |
. . . . . . . . 9
⊢ (𝐶 ∈ ℝ+
→ 𝐶 ∈
ℝ) |
26 | 25 | 3ad2ant3 1134 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ+) → 𝐶 ∈ ℝ) |
27 | 15 | rpred 12772 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ+) → (1 / 𝐶) ∈ ℝ) |
28 | | rexmul 13005 |
. . . . . . . 8
⊢ ((𝐶 ∈ ℝ ∧ (1 / 𝐶) ∈ ℝ) → (𝐶 ·e (1 / 𝐶)) = (𝐶 · (1 / 𝐶))) |
29 | 26, 27, 28 | syl2anc 584 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ+) → (𝐶 ·e (1 / 𝐶)) = (𝐶 · (1 / 𝐶))) |
30 | 26 | recnd 11003 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ+) → 𝐶 ∈ ℂ) |
31 | | rpne0 12746 |
. . . . . . . . 9
⊢ (𝐶 ∈ ℝ+
→ 𝐶 ≠
0) |
32 | 31 | 3ad2ant3 1134 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ+) → 𝐶 ≠ 0) |
33 | 30, 32 | recidd 11746 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ+) → (𝐶 · (1 / 𝐶)) = 1) |
34 | 29, 33 | eqtrd 2778 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ+) → (𝐶 ·e (1 / 𝐶)) = 1) |
35 | 34 | oveq2d 7291 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ+) → (𝐴 ·e (𝐶 ·e (1 / 𝐶))) = (𝐴 ·e 1)) |
36 | | xmulid1 13013 |
. . . . . 6
⊢ (𝐴 ∈ ℝ*
→ (𝐴
·e 1) = 𝐴) |
37 | 7, 36 | syl 17 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ+) → (𝐴 ·e 1) = 𝐴) |
38 | 24, 35, 37 | 3eqtrd 2782 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ+) → ((𝐴 ·e 𝐶) ·e (1 / 𝐶)) = 𝐴) |
39 | | xmulass 13021 |
. . . . . 6
⊢ ((𝐵 ∈ ℝ*
∧ 𝐶 ∈
ℝ* ∧ (1 / 𝐶) ∈ ℝ*) → ((𝐵 ·e 𝐶) ·e (1 /
𝐶)) = (𝐵 ·e (𝐶 ·e (1 / 𝐶)))) |
40 | 11, 8, 17, 39 | syl3anc 1370 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ+) → ((𝐵 ·e 𝐶) ·e (1 / 𝐶)) = (𝐵 ·e (𝐶 ·e (1 / 𝐶)))) |
41 | 34 | oveq2d 7291 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ+) → (𝐵 ·e (𝐶 ·e (1 / 𝐶))) = (𝐵 ·e 1)) |
42 | | xmulid1 13013 |
. . . . . 6
⊢ (𝐵 ∈ ℝ*
→ (𝐵
·e 1) = 𝐵) |
43 | 11, 42 | syl 17 |
. . . . 5
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ+) → (𝐵 ·e 1) = 𝐵) |
44 | 40, 41, 43 | 3eqtrd 2782 |
. . . 4
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ+) → ((𝐵 ·e 𝐶) ·e (1 / 𝐶)) = 𝐵) |
45 | 38, 44 | breq12d 5087 |
. . 3
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ+) → (((𝐴 ·e 𝐶) ·e (1 / 𝐶)) ≤ ((𝐵 ·e 𝐶) ·e (1 / 𝐶)) ↔ 𝐴 ≤ 𝐵)) |
46 | 22, 45 | sylibd 238 |
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ+) → ((𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶) → 𝐴 ≤ 𝐵)) |
47 | 6, 46 | impbid 211 |
1
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐶
∈ ℝ+) → (𝐴 ≤ 𝐵 ↔ (𝐴 ·e 𝐶) ≤ (𝐵 ·e 𝐶))) |