![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpchom2 | Structured version Visualization version GIF version |
Description: Value of the set of morphisms in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
xpcco2.t | ⊢ 𝑇 = (𝐶 ×c 𝐷) |
xpcco2.x | ⊢ 𝑋 = (Base‘𝐶) |
xpcco2.y | ⊢ 𝑌 = (Base‘𝐷) |
xpcco2.h | ⊢ 𝐻 = (Hom ‘𝐶) |
xpcco2.j | ⊢ 𝐽 = (Hom ‘𝐷) |
xpcco2.m | ⊢ (𝜑 → 𝑀 ∈ 𝑋) |
xpcco2.n | ⊢ (𝜑 → 𝑁 ∈ 𝑌) |
xpcco2.p | ⊢ (𝜑 → 𝑃 ∈ 𝑋) |
xpcco2.q | ⊢ (𝜑 → 𝑄 ∈ 𝑌) |
xpchom2.k | ⊢ 𝐾 = (Hom ‘𝑇) |
Ref | Expression |
---|---|
xpchom2 | ⊢ (𝜑 → (⟨𝑀, 𝑁⟩𝐾⟨𝑃, 𝑄⟩) = ((𝑀𝐻𝑃) × (𝑁𝐽𝑄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpcco2.t | . . 3 ⊢ 𝑇 = (𝐶 ×c 𝐷) | |
2 | xpcco2.x | . . . 4 ⊢ 𝑋 = (Base‘𝐶) | |
3 | xpcco2.y | . . . 4 ⊢ 𝑌 = (Base‘𝐷) | |
4 | 1, 2, 3 | xpcbas 18130 | . . 3 ⊢ (𝑋 × 𝑌) = (Base‘𝑇) |
5 | xpcco2.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
6 | xpcco2.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
7 | xpchom2.k | . . 3 ⊢ 𝐾 = (Hom ‘𝑇) | |
8 | xpcco2.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ 𝑋) | |
9 | xpcco2.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ 𝑌) | |
10 | 8, 9 | opelxpd 5716 | . . 3 ⊢ (𝜑 → ⟨𝑀, 𝑁⟩ ∈ (𝑋 × 𝑌)) |
11 | xpcco2.p | . . . 4 ⊢ (𝜑 → 𝑃 ∈ 𝑋) | |
12 | xpcco2.q | . . . 4 ⊢ (𝜑 → 𝑄 ∈ 𝑌) | |
13 | 11, 12 | opelxpd 5716 | . . 3 ⊢ (𝜑 → ⟨𝑃, 𝑄⟩ ∈ (𝑋 × 𝑌)) |
14 | 1, 4, 5, 6, 7, 10, 13 | xpchom 18132 | . 2 ⊢ (𝜑 → (⟨𝑀, 𝑁⟩𝐾⟨𝑃, 𝑄⟩) = (((1st ‘⟨𝑀, 𝑁⟩)𝐻(1st ‘⟨𝑃, 𝑄⟩)) × ((2nd ‘⟨𝑀, 𝑁⟩)𝐽(2nd ‘⟨𝑃, 𝑄⟩)))) |
15 | op1stg 7987 | . . . . 5 ⊢ ((𝑀 ∈ 𝑋 ∧ 𝑁 ∈ 𝑌) → (1st ‘⟨𝑀, 𝑁⟩) = 𝑀) | |
16 | 8, 9, 15 | syl2anc 585 | . . . 4 ⊢ (𝜑 → (1st ‘⟨𝑀, 𝑁⟩) = 𝑀) |
17 | op1stg 7987 | . . . . 5 ⊢ ((𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌) → (1st ‘⟨𝑃, 𝑄⟩) = 𝑃) | |
18 | 11, 12, 17 | syl2anc 585 | . . . 4 ⊢ (𝜑 → (1st ‘⟨𝑃, 𝑄⟩) = 𝑃) |
19 | 16, 18 | oveq12d 7427 | . . 3 ⊢ (𝜑 → ((1st ‘⟨𝑀, 𝑁⟩)𝐻(1st ‘⟨𝑃, 𝑄⟩)) = (𝑀𝐻𝑃)) |
20 | op2ndg 7988 | . . . . 5 ⊢ ((𝑀 ∈ 𝑋 ∧ 𝑁 ∈ 𝑌) → (2nd ‘⟨𝑀, 𝑁⟩) = 𝑁) | |
21 | 8, 9, 20 | syl2anc 585 | . . . 4 ⊢ (𝜑 → (2nd ‘⟨𝑀, 𝑁⟩) = 𝑁) |
22 | op2ndg 7988 | . . . . 5 ⊢ ((𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌) → (2nd ‘⟨𝑃, 𝑄⟩) = 𝑄) | |
23 | 11, 12, 22 | syl2anc 585 | . . . 4 ⊢ (𝜑 → (2nd ‘⟨𝑃, 𝑄⟩) = 𝑄) |
24 | 21, 23 | oveq12d 7427 | . . 3 ⊢ (𝜑 → ((2nd ‘⟨𝑀, 𝑁⟩)𝐽(2nd ‘⟨𝑃, 𝑄⟩)) = (𝑁𝐽𝑄)) |
25 | 19, 24 | xpeq12d 5708 | . 2 ⊢ (𝜑 → (((1st ‘⟨𝑀, 𝑁⟩)𝐻(1st ‘⟨𝑃, 𝑄⟩)) × ((2nd ‘⟨𝑀, 𝑁⟩)𝐽(2nd ‘⟨𝑃, 𝑄⟩))) = ((𝑀𝐻𝑃) × (𝑁𝐽𝑄))) |
26 | 14, 25 | eqtrd 2773 | 1 ⊢ (𝜑 → (⟨𝑀, 𝑁⟩𝐾⟨𝑃, 𝑄⟩) = ((𝑀𝐻𝑃) × (𝑁𝐽𝑄))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ⟨cop 4635 × cxp 5675 ‘cfv 6544 (class class class)co 7409 1st c1st 7973 2nd c2nd 7974 Basecbs 17144 Hom chom 17208 ×c cxpc 18120 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-fz 13485 df-struct 17080 df-slot 17115 df-ndx 17127 df-base 17145 df-hom 17221 df-cco 17222 df-xpc 18124 |
This theorem is referenced by: xpcco2 18139 prfcl 18155 evlfcl 18175 curf1cl 18181 curf2cl 18184 curfcl 18185 uncf2 18190 uncfcurf 18192 diag12 18197 diag2 18198 curf2ndf 18200 yonedalem22 18231 yonedalem3b 18232 |
Copyright terms: Public domain | W3C validator |