Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpchom2 | Structured version Visualization version GIF version |
Description: Value of the set of morphisms in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
xpcco2.t | ⊢ 𝑇 = (𝐶 ×c 𝐷) |
xpcco2.x | ⊢ 𝑋 = (Base‘𝐶) |
xpcco2.y | ⊢ 𝑌 = (Base‘𝐷) |
xpcco2.h | ⊢ 𝐻 = (Hom ‘𝐶) |
xpcco2.j | ⊢ 𝐽 = (Hom ‘𝐷) |
xpcco2.m | ⊢ (𝜑 → 𝑀 ∈ 𝑋) |
xpcco2.n | ⊢ (𝜑 → 𝑁 ∈ 𝑌) |
xpcco2.p | ⊢ (𝜑 → 𝑃 ∈ 𝑋) |
xpcco2.q | ⊢ (𝜑 → 𝑄 ∈ 𝑌) |
xpchom2.k | ⊢ 𝐾 = (Hom ‘𝑇) |
Ref | Expression |
---|---|
xpchom2 | ⊢ (𝜑 → (〈𝑀, 𝑁〉𝐾〈𝑃, 𝑄〉) = ((𝑀𝐻𝑃) × (𝑁𝐽𝑄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpcco2.t | . . 3 ⊢ 𝑇 = (𝐶 ×c 𝐷) | |
2 | xpcco2.x | . . . 4 ⊢ 𝑋 = (Base‘𝐶) | |
3 | xpcco2.y | . . . 4 ⊢ 𝑌 = (Base‘𝐷) | |
4 | 1, 2, 3 | xpcbas 17940 | . . 3 ⊢ (𝑋 × 𝑌) = (Base‘𝑇) |
5 | xpcco2.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
6 | xpcco2.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
7 | xpchom2.k | . . 3 ⊢ 𝐾 = (Hom ‘𝑇) | |
8 | xpcco2.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ 𝑋) | |
9 | xpcco2.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ 𝑌) | |
10 | 8, 9 | opelxpd 5638 | . . 3 ⊢ (𝜑 → 〈𝑀, 𝑁〉 ∈ (𝑋 × 𝑌)) |
11 | xpcco2.p | . . . 4 ⊢ (𝜑 → 𝑃 ∈ 𝑋) | |
12 | xpcco2.q | . . . 4 ⊢ (𝜑 → 𝑄 ∈ 𝑌) | |
13 | 11, 12 | opelxpd 5638 | . . 3 ⊢ (𝜑 → 〈𝑃, 𝑄〉 ∈ (𝑋 × 𝑌)) |
14 | 1, 4, 5, 6, 7, 10, 13 | xpchom 17942 | . 2 ⊢ (𝜑 → (〈𝑀, 𝑁〉𝐾〈𝑃, 𝑄〉) = (((1st ‘〈𝑀, 𝑁〉)𝐻(1st ‘〈𝑃, 𝑄〉)) × ((2nd ‘〈𝑀, 𝑁〉)𝐽(2nd ‘〈𝑃, 𝑄〉)))) |
15 | op1stg 7875 | . . . . 5 ⊢ ((𝑀 ∈ 𝑋 ∧ 𝑁 ∈ 𝑌) → (1st ‘〈𝑀, 𝑁〉) = 𝑀) | |
16 | 8, 9, 15 | syl2anc 585 | . . . 4 ⊢ (𝜑 → (1st ‘〈𝑀, 𝑁〉) = 𝑀) |
17 | op1stg 7875 | . . . . 5 ⊢ ((𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌) → (1st ‘〈𝑃, 𝑄〉) = 𝑃) | |
18 | 11, 12, 17 | syl2anc 585 | . . . 4 ⊢ (𝜑 → (1st ‘〈𝑃, 𝑄〉) = 𝑃) |
19 | 16, 18 | oveq12d 7325 | . . 3 ⊢ (𝜑 → ((1st ‘〈𝑀, 𝑁〉)𝐻(1st ‘〈𝑃, 𝑄〉)) = (𝑀𝐻𝑃)) |
20 | op2ndg 7876 | . . . . 5 ⊢ ((𝑀 ∈ 𝑋 ∧ 𝑁 ∈ 𝑌) → (2nd ‘〈𝑀, 𝑁〉) = 𝑁) | |
21 | 8, 9, 20 | syl2anc 585 | . . . 4 ⊢ (𝜑 → (2nd ‘〈𝑀, 𝑁〉) = 𝑁) |
22 | op2ndg 7876 | . . . . 5 ⊢ ((𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌) → (2nd ‘〈𝑃, 𝑄〉) = 𝑄) | |
23 | 11, 12, 22 | syl2anc 585 | . . . 4 ⊢ (𝜑 → (2nd ‘〈𝑃, 𝑄〉) = 𝑄) |
24 | 21, 23 | oveq12d 7325 | . . 3 ⊢ (𝜑 → ((2nd ‘〈𝑀, 𝑁〉)𝐽(2nd ‘〈𝑃, 𝑄〉)) = (𝑁𝐽𝑄)) |
25 | 19, 24 | xpeq12d 5631 | . 2 ⊢ (𝜑 → (((1st ‘〈𝑀, 𝑁〉)𝐻(1st ‘〈𝑃, 𝑄〉)) × ((2nd ‘〈𝑀, 𝑁〉)𝐽(2nd ‘〈𝑃, 𝑄〉))) = ((𝑀𝐻𝑃) × (𝑁𝐽𝑄))) |
26 | 14, 25 | eqtrd 2776 | 1 ⊢ (𝜑 → (〈𝑀, 𝑁〉𝐾〈𝑃, 𝑄〉) = ((𝑀𝐻𝑃) × (𝑁𝐽𝑄))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 〈cop 4571 × cxp 5598 ‘cfv 6458 (class class class)co 7307 1st c1st 7861 2nd c2nd 7862 Basecbs 16957 Hom chom 17018 ×c cxpc 17930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-tp 4570 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-2 12082 df-3 12083 df-4 12084 df-5 12085 df-6 12086 df-7 12087 df-8 12088 df-9 12089 df-n0 12280 df-z 12366 df-dec 12484 df-uz 12629 df-fz 13286 df-struct 16893 df-slot 16928 df-ndx 16940 df-base 16958 df-hom 17031 df-cco 17032 df-xpc 17934 |
This theorem is referenced by: xpcco2 17949 prfcl 17965 evlfcl 17985 curf1cl 17991 curf2cl 17994 curfcl 17995 uncf2 18000 uncfcurf 18002 diag12 18007 diag2 18008 curf2ndf 18010 yonedalem22 18041 yonedalem3b 18042 |
Copyright terms: Public domain | W3C validator |