Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpchom2 | Structured version Visualization version GIF version |
Description: Value of the set of morphisms in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
xpcco2.t | ⊢ 𝑇 = (𝐶 ×c 𝐷) |
xpcco2.x | ⊢ 𝑋 = (Base‘𝐶) |
xpcco2.y | ⊢ 𝑌 = (Base‘𝐷) |
xpcco2.h | ⊢ 𝐻 = (Hom ‘𝐶) |
xpcco2.j | ⊢ 𝐽 = (Hom ‘𝐷) |
xpcco2.m | ⊢ (𝜑 → 𝑀 ∈ 𝑋) |
xpcco2.n | ⊢ (𝜑 → 𝑁 ∈ 𝑌) |
xpcco2.p | ⊢ (𝜑 → 𝑃 ∈ 𝑋) |
xpcco2.q | ⊢ (𝜑 → 𝑄 ∈ 𝑌) |
xpchom2.k | ⊢ 𝐾 = (Hom ‘𝑇) |
Ref | Expression |
---|---|
xpchom2 | ⊢ (𝜑 → (〈𝑀, 𝑁〉𝐾〈𝑃, 𝑄〉) = ((𝑀𝐻𝑃) × (𝑁𝐽𝑄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpcco2.t | . . 3 ⊢ 𝑇 = (𝐶 ×c 𝐷) | |
2 | xpcco2.x | . . . 4 ⊢ 𝑋 = (Base‘𝐶) | |
3 | xpcco2.y | . . . 4 ⊢ 𝑌 = (Base‘𝐷) | |
4 | 1, 2, 3 | xpcbas 17876 | . . 3 ⊢ (𝑋 × 𝑌) = (Base‘𝑇) |
5 | xpcco2.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
6 | xpcco2.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
7 | xpchom2.k | . . 3 ⊢ 𝐾 = (Hom ‘𝑇) | |
8 | xpcco2.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ 𝑋) | |
9 | xpcco2.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ 𝑌) | |
10 | 8, 9 | opelxpd 5626 | . . 3 ⊢ (𝜑 → 〈𝑀, 𝑁〉 ∈ (𝑋 × 𝑌)) |
11 | xpcco2.p | . . . 4 ⊢ (𝜑 → 𝑃 ∈ 𝑋) | |
12 | xpcco2.q | . . . 4 ⊢ (𝜑 → 𝑄 ∈ 𝑌) | |
13 | 11, 12 | opelxpd 5626 | . . 3 ⊢ (𝜑 → 〈𝑃, 𝑄〉 ∈ (𝑋 × 𝑌)) |
14 | 1, 4, 5, 6, 7, 10, 13 | xpchom 17878 | . 2 ⊢ (𝜑 → (〈𝑀, 𝑁〉𝐾〈𝑃, 𝑄〉) = (((1st ‘〈𝑀, 𝑁〉)𝐻(1st ‘〈𝑃, 𝑄〉)) × ((2nd ‘〈𝑀, 𝑁〉)𝐽(2nd ‘〈𝑃, 𝑄〉)))) |
15 | op1stg 7829 | . . . . 5 ⊢ ((𝑀 ∈ 𝑋 ∧ 𝑁 ∈ 𝑌) → (1st ‘〈𝑀, 𝑁〉) = 𝑀) | |
16 | 8, 9, 15 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (1st ‘〈𝑀, 𝑁〉) = 𝑀) |
17 | op1stg 7829 | . . . . 5 ⊢ ((𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌) → (1st ‘〈𝑃, 𝑄〉) = 𝑃) | |
18 | 11, 12, 17 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (1st ‘〈𝑃, 𝑄〉) = 𝑃) |
19 | 16, 18 | oveq12d 7286 | . . 3 ⊢ (𝜑 → ((1st ‘〈𝑀, 𝑁〉)𝐻(1st ‘〈𝑃, 𝑄〉)) = (𝑀𝐻𝑃)) |
20 | op2ndg 7830 | . . . . 5 ⊢ ((𝑀 ∈ 𝑋 ∧ 𝑁 ∈ 𝑌) → (2nd ‘〈𝑀, 𝑁〉) = 𝑁) | |
21 | 8, 9, 20 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (2nd ‘〈𝑀, 𝑁〉) = 𝑁) |
22 | op2ndg 7830 | . . . . 5 ⊢ ((𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌) → (2nd ‘〈𝑃, 𝑄〉) = 𝑄) | |
23 | 11, 12, 22 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (2nd ‘〈𝑃, 𝑄〉) = 𝑄) |
24 | 21, 23 | oveq12d 7286 | . . 3 ⊢ (𝜑 → ((2nd ‘〈𝑀, 𝑁〉)𝐽(2nd ‘〈𝑃, 𝑄〉)) = (𝑁𝐽𝑄)) |
25 | 19, 24 | xpeq12d 5619 | . 2 ⊢ (𝜑 → (((1st ‘〈𝑀, 𝑁〉)𝐻(1st ‘〈𝑃, 𝑄〉)) × ((2nd ‘〈𝑀, 𝑁〉)𝐽(2nd ‘〈𝑃, 𝑄〉))) = ((𝑀𝐻𝑃) × (𝑁𝐽𝑄))) |
26 | 14, 25 | eqtrd 2779 | 1 ⊢ (𝜑 → (〈𝑀, 𝑁〉𝐾〈𝑃, 𝑄〉) = ((𝑀𝐻𝑃) × (𝑁𝐽𝑄))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 〈cop 4572 × cxp 5586 ‘cfv 6430 (class class class)co 7268 1st c1st 7815 2nd c2nd 7816 Basecbs 16893 Hom chom 16954 ×c cxpc 17866 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-z 12303 df-dec 12420 df-uz 12565 df-fz 13222 df-struct 16829 df-slot 16864 df-ndx 16876 df-base 16894 df-hom 16967 df-cco 16968 df-xpc 17870 |
This theorem is referenced by: xpcco2 17885 prfcl 17901 evlfcl 17921 curf1cl 17927 curf2cl 17930 curfcl 17931 uncf2 17936 uncfcurf 17938 diag12 17943 diag2 17944 curf2ndf 17946 yonedalem22 17977 yonedalem3b 17978 |
Copyright terms: Public domain | W3C validator |