![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpchom2 | Structured version Visualization version GIF version |
Description: Value of the set of morphisms in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
xpcco2.t | ⊢ 𝑇 = (𝐶 ×c 𝐷) |
xpcco2.x | ⊢ 𝑋 = (Base‘𝐶) |
xpcco2.y | ⊢ 𝑌 = (Base‘𝐷) |
xpcco2.h | ⊢ 𝐻 = (Hom ‘𝐶) |
xpcco2.j | ⊢ 𝐽 = (Hom ‘𝐷) |
xpcco2.m | ⊢ (𝜑 → 𝑀 ∈ 𝑋) |
xpcco2.n | ⊢ (𝜑 → 𝑁 ∈ 𝑌) |
xpcco2.p | ⊢ (𝜑 → 𝑃 ∈ 𝑋) |
xpcco2.q | ⊢ (𝜑 → 𝑄 ∈ 𝑌) |
xpchom2.k | ⊢ 𝐾 = (Hom ‘𝑇) |
Ref | Expression |
---|---|
xpchom2 | ⊢ (𝜑 → (〈𝑀, 𝑁〉𝐾〈𝑃, 𝑄〉) = ((𝑀𝐻𝑃) × (𝑁𝐽𝑄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpcco2.t | . . 3 ⊢ 𝑇 = (𝐶 ×c 𝐷) | |
2 | xpcco2.x | . . . 4 ⊢ 𝑋 = (Base‘𝐶) | |
3 | xpcco2.y | . . . 4 ⊢ 𝑌 = (Base‘𝐷) | |
4 | 1, 2, 3 | xpcbas 17026 | . . 3 ⊢ (𝑋 × 𝑌) = (Base‘𝑇) |
5 | xpcco2.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
6 | xpcco2.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
7 | xpchom2.k | . . 3 ⊢ 𝐾 = (Hom ‘𝑇) | |
8 | xpcco2.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ 𝑋) | |
9 | xpcco2.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ 𝑌) | |
10 | opelxpi 5288 | . . . 4 ⊢ ((𝑀 ∈ 𝑋 ∧ 𝑁 ∈ 𝑌) → 〈𝑀, 𝑁〉 ∈ (𝑋 × 𝑌)) | |
11 | 8, 9, 10 | syl2anc 573 | . . 3 ⊢ (𝜑 → 〈𝑀, 𝑁〉 ∈ (𝑋 × 𝑌)) |
12 | xpcco2.p | . . . 4 ⊢ (𝜑 → 𝑃 ∈ 𝑋) | |
13 | xpcco2.q | . . . 4 ⊢ (𝜑 → 𝑄 ∈ 𝑌) | |
14 | opelxpi 5288 | . . . 4 ⊢ ((𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌) → 〈𝑃, 𝑄〉 ∈ (𝑋 × 𝑌)) | |
15 | 12, 13, 14 | syl2anc 573 | . . 3 ⊢ (𝜑 → 〈𝑃, 𝑄〉 ∈ (𝑋 × 𝑌)) |
16 | 1, 4, 5, 6, 7, 11, 15 | xpchom 17028 | . 2 ⊢ (𝜑 → (〈𝑀, 𝑁〉𝐾〈𝑃, 𝑄〉) = (((1st ‘〈𝑀, 𝑁〉)𝐻(1st ‘〈𝑃, 𝑄〉)) × ((2nd ‘〈𝑀, 𝑁〉)𝐽(2nd ‘〈𝑃, 𝑄〉)))) |
17 | op1stg 7327 | . . . . 5 ⊢ ((𝑀 ∈ 𝑋 ∧ 𝑁 ∈ 𝑌) → (1st ‘〈𝑀, 𝑁〉) = 𝑀) | |
18 | 8, 9, 17 | syl2anc 573 | . . . 4 ⊢ (𝜑 → (1st ‘〈𝑀, 𝑁〉) = 𝑀) |
19 | op1stg 7327 | . . . . 5 ⊢ ((𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌) → (1st ‘〈𝑃, 𝑄〉) = 𝑃) | |
20 | 12, 13, 19 | syl2anc 573 | . . . 4 ⊢ (𝜑 → (1st ‘〈𝑃, 𝑄〉) = 𝑃) |
21 | 18, 20 | oveq12d 6811 | . . 3 ⊢ (𝜑 → ((1st ‘〈𝑀, 𝑁〉)𝐻(1st ‘〈𝑃, 𝑄〉)) = (𝑀𝐻𝑃)) |
22 | op2ndg 7328 | . . . . 5 ⊢ ((𝑀 ∈ 𝑋 ∧ 𝑁 ∈ 𝑌) → (2nd ‘〈𝑀, 𝑁〉) = 𝑁) | |
23 | 8, 9, 22 | syl2anc 573 | . . . 4 ⊢ (𝜑 → (2nd ‘〈𝑀, 𝑁〉) = 𝑁) |
24 | op2ndg 7328 | . . . . 5 ⊢ ((𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌) → (2nd ‘〈𝑃, 𝑄〉) = 𝑄) | |
25 | 12, 13, 24 | syl2anc 573 | . . . 4 ⊢ (𝜑 → (2nd ‘〈𝑃, 𝑄〉) = 𝑄) |
26 | 23, 25 | oveq12d 6811 | . . 3 ⊢ (𝜑 → ((2nd ‘〈𝑀, 𝑁〉)𝐽(2nd ‘〈𝑃, 𝑄〉)) = (𝑁𝐽𝑄)) |
27 | 21, 26 | xpeq12d 5280 | . 2 ⊢ (𝜑 → (((1st ‘〈𝑀, 𝑁〉)𝐻(1st ‘〈𝑃, 𝑄〉)) × ((2nd ‘〈𝑀, 𝑁〉)𝐽(2nd ‘〈𝑃, 𝑄〉))) = ((𝑀𝐻𝑃) × (𝑁𝐽𝑄))) |
28 | 16, 27 | eqtrd 2805 | 1 ⊢ (𝜑 → (〈𝑀, 𝑁〉𝐾〈𝑃, 𝑄〉) = ((𝑀𝐻𝑃) × (𝑁𝐽𝑄))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 〈cop 4322 × cxp 5247 ‘cfv 6031 (class class class)co 6793 1st c1st 7313 2nd c2nd 7314 Basecbs 16064 Hom chom 16160 ×c cxpc 17016 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-5 11284 df-6 11285 df-7 11286 df-8 11287 df-9 11288 df-n0 11495 df-z 11580 df-dec 11696 df-uz 11889 df-fz 12534 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-hom 16174 df-cco 16175 df-xpc 17020 |
This theorem is referenced by: xpcco2 17035 prfcl 17051 evlfcl 17070 curf1cl 17076 curf2cl 17079 curfcl 17080 uncf2 17085 uncfcurf 17087 diag12 17092 diag2 17093 curf2ndf 17095 yonedalem22 17126 yonedalem3b 17127 |
Copyright terms: Public domain | W3C validator |