MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpchom2 Structured version   Visualization version   GIF version

Theorem xpchom2 18182
Description: Value of the set of morphisms in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
xpcco2.t 𝑇 = (𝐶 ×c 𝐷)
xpcco2.x 𝑋 = (Base‘𝐶)
xpcco2.y 𝑌 = (Base‘𝐷)
xpcco2.h 𝐻 = (Hom ‘𝐶)
xpcco2.j 𝐽 = (Hom ‘𝐷)
xpcco2.m (𝜑𝑀𝑋)
xpcco2.n (𝜑𝑁𝑌)
xpcco2.p (𝜑𝑃𝑋)
xpcco2.q (𝜑𝑄𝑌)
xpchom2.k 𝐾 = (Hom ‘𝑇)
Assertion
Ref Expression
xpchom2 (𝜑 → (⟨𝑀, 𝑁𝐾𝑃, 𝑄⟩) = ((𝑀𝐻𝑃) × (𝑁𝐽𝑄)))

Proof of Theorem xpchom2
StepHypRef Expression
1 xpcco2.t . . 3 𝑇 = (𝐶 ×c 𝐷)
2 xpcco2.x . . . 4 𝑋 = (Base‘𝐶)
3 xpcco2.y . . . 4 𝑌 = (Base‘𝐷)
41, 2, 3xpcbas 18174 . . 3 (𝑋 × 𝑌) = (Base‘𝑇)
5 xpcco2.h . . 3 𝐻 = (Hom ‘𝐶)
6 xpcco2.j . . 3 𝐽 = (Hom ‘𝐷)
7 xpchom2.k . . 3 𝐾 = (Hom ‘𝑇)
8 xpcco2.m . . . 4 (𝜑𝑀𝑋)
9 xpcco2.n . . . 4 (𝜑𝑁𝑌)
108, 9opelxpd 5719 . . 3 (𝜑 → ⟨𝑀, 𝑁⟩ ∈ (𝑋 × 𝑌))
11 xpcco2.p . . . 4 (𝜑𝑃𝑋)
12 xpcco2.q . . . 4 (𝜑𝑄𝑌)
1311, 12opelxpd 5719 . . 3 (𝜑 → ⟨𝑃, 𝑄⟩ ∈ (𝑋 × 𝑌))
141, 4, 5, 6, 7, 10, 13xpchom 18176 . 2 (𝜑 → (⟨𝑀, 𝑁𝐾𝑃, 𝑄⟩) = (((1st ‘⟨𝑀, 𝑁⟩)𝐻(1st ‘⟨𝑃, 𝑄⟩)) × ((2nd ‘⟨𝑀, 𝑁⟩)𝐽(2nd ‘⟨𝑃, 𝑄⟩))))
15 op1stg 8009 . . . . 5 ((𝑀𝑋𝑁𝑌) → (1st ‘⟨𝑀, 𝑁⟩) = 𝑀)
168, 9, 15syl2anc 582 . . . 4 (𝜑 → (1st ‘⟨𝑀, 𝑁⟩) = 𝑀)
17 op1stg 8009 . . . . 5 ((𝑃𝑋𝑄𝑌) → (1st ‘⟨𝑃, 𝑄⟩) = 𝑃)
1811, 12, 17syl2anc 582 . . . 4 (𝜑 → (1st ‘⟨𝑃, 𝑄⟩) = 𝑃)
1916, 18oveq12d 7442 . . 3 (𝜑 → ((1st ‘⟨𝑀, 𝑁⟩)𝐻(1st ‘⟨𝑃, 𝑄⟩)) = (𝑀𝐻𝑃))
20 op2ndg 8010 . . . . 5 ((𝑀𝑋𝑁𝑌) → (2nd ‘⟨𝑀, 𝑁⟩) = 𝑁)
218, 9, 20syl2anc 582 . . . 4 (𝜑 → (2nd ‘⟨𝑀, 𝑁⟩) = 𝑁)
22 op2ndg 8010 . . . . 5 ((𝑃𝑋𝑄𝑌) → (2nd ‘⟨𝑃, 𝑄⟩) = 𝑄)
2311, 12, 22syl2anc 582 . . . 4 (𝜑 → (2nd ‘⟨𝑃, 𝑄⟩) = 𝑄)
2421, 23oveq12d 7442 . . 3 (𝜑 → ((2nd ‘⟨𝑀, 𝑁⟩)𝐽(2nd ‘⟨𝑃, 𝑄⟩)) = (𝑁𝐽𝑄))
2519, 24xpeq12d 5711 . 2 (𝜑 → (((1st ‘⟨𝑀, 𝑁⟩)𝐻(1st ‘⟨𝑃, 𝑄⟩)) × ((2nd ‘⟨𝑀, 𝑁⟩)𝐽(2nd ‘⟨𝑃, 𝑄⟩))) = ((𝑀𝐻𝑃) × (𝑁𝐽𝑄)))
2614, 25eqtrd 2767 1 (𝜑 → (⟨𝑀, 𝑁𝐾𝑃, 𝑄⟩) = ((𝑀𝐻𝑃) × (𝑁𝐽𝑄)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  cop 4636   × cxp 5678  cfv 6551  (class class class)co 7424  1st c1st 7995  2nd c2nd 7996  Basecbs 17185  Hom chom 17249   ×c cxpc 18164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-rep 5287  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431  ax-un 7744  ax-cnex 11200  ax-resscn 11201  ax-1cn 11202  ax-icn 11203  ax-addcl 11204  ax-addrcl 11205  ax-mulcl 11206  ax-mulrcl 11207  ax-mulcom 11208  ax-addass 11209  ax-mulass 11210  ax-distr 11211  ax-i2m1 11212  ax-1ne0 11213  ax-1rid 11214  ax-rnegex 11215  ax-rrecex 11216  ax-cnre 11217  ax-pre-lttri 11218  ax-pre-lttrn 11219  ax-pre-ltadd 11220  ax-pre-mulgt0 11221
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3373  df-rab 3429  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4911  df-iun 5000  df-br 5151  df-opab 5213  df-mpt 5234  df-tr 5268  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5635  df-we 5637  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-rn 5691  df-res 5692  df-ima 5693  df-pred 6308  df-ord 6375  df-on 6376  df-lim 6377  df-suc 6378  df-iota 6503  df-fun 6553  df-fn 6554  df-f 6555  df-f1 6556  df-fo 6557  df-f1o 6558  df-fv 6559  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7875  df-1st 7997  df-2nd 7998  df-frecs 8291  df-wrecs 8322  df-recs 8396  df-rdg 8435  df-1o 8491  df-er 8729  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-pnf 11286  df-mnf 11287  df-xr 11288  df-ltxr 11289  df-le 11290  df-sub 11482  df-neg 11483  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12509  df-z 12595  df-dec 12714  df-uz 12859  df-fz 13523  df-struct 17121  df-slot 17156  df-ndx 17168  df-base 17186  df-hom 17262  df-cco 17263  df-xpc 18168
This theorem is referenced by:  xpcco2  18183  prfcl  18199  evlfcl  18219  curf1cl  18225  curf2cl  18228  curfcl  18229  uncf2  18234  uncfcurf  18236  diag12  18241  diag2  18242  curf2ndf  18244  yonedalem22  18275  yonedalem3b  18276
  Copyright terms: Public domain W3C validator