![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpchom2 | Structured version Visualization version GIF version |
Description: Value of the set of morphisms in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
xpcco2.t | ⊢ 𝑇 = (𝐶 ×c 𝐷) |
xpcco2.x | ⊢ 𝑋 = (Base‘𝐶) |
xpcco2.y | ⊢ 𝑌 = (Base‘𝐷) |
xpcco2.h | ⊢ 𝐻 = (Hom ‘𝐶) |
xpcco2.j | ⊢ 𝐽 = (Hom ‘𝐷) |
xpcco2.m | ⊢ (𝜑 → 𝑀 ∈ 𝑋) |
xpcco2.n | ⊢ (𝜑 → 𝑁 ∈ 𝑌) |
xpcco2.p | ⊢ (𝜑 → 𝑃 ∈ 𝑋) |
xpcco2.q | ⊢ (𝜑 → 𝑄 ∈ 𝑌) |
xpchom2.k | ⊢ 𝐾 = (Hom ‘𝑇) |
Ref | Expression |
---|---|
xpchom2 | ⊢ (𝜑 → (⟨𝑀, 𝑁⟩𝐾⟨𝑃, 𝑄⟩) = ((𝑀𝐻𝑃) × (𝑁𝐽𝑄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpcco2.t | . . 3 ⊢ 𝑇 = (𝐶 ×c 𝐷) | |
2 | xpcco2.x | . . . 4 ⊢ 𝑋 = (Base‘𝐶) | |
3 | xpcco2.y | . . . 4 ⊢ 𝑌 = (Base‘𝐷) | |
4 | 1, 2, 3 | xpcbas 18140 | . . 3 ⊢ (𝑋 × 𝑌) = (Base‘𝑇) |
5 | xpcco2.h | . . 3 ⊢ 𝐻 = (Hom ‘𝐶) | |
6 | xpcco2.j | . . 3 ⊢ 𝐽 = (Hom ‘𝐷) | |
7 | xpchom2.k | . . 3 ⊢ 𝐾 = (Hom ‘𝑇) | |
8 | xpcco2.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ 𝑋) | |
9 | xpcco2.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ 𝑌) | |
10 | 8, 9 | opelxpd 5708 | . . 3 ⊢ (𝜑 → ⟨𝑀, 𝑁⟩ ∈ (𝑋 × 𝑌)) |
11 | xpcco2.p | . . . 4 ⊢ (𝜑 → 𝑃 ∈ 𝑋) | |
12 | xpcco2.q | . . . 4 ⊢ (𝜑 → 𝑄 ∈ 𝑌) | |
13 | 11, 12 | opelxpd 5708 | . . 3 ⊢ (𝜑 → ⟨𝑃, 𝑄⟩ ∈ (𝑋 × 𝑌)) |
14 | 1, 4, 5, 6, 7, 10, 13 | xpchom 18142 | . 2 ⊢ (𝜑 → (⟨𝑀, 𝑁⟩𝐾⟨𝑃, 𝑄⟩) = (((1st ‘⟨𝑀, 𝑁⟩)𝐻(1st ‘⟨𝑃, 𝑄⟩)) × ((2nd ‘⟨𝑀, 𝑁⟩)𝐽(2nd ‘⟨𝑃, 𝑄⟩)))) |
15 | op1stg 7983 | . . . . 5 ⊢ ((𝑀 ∈ 𝑋 ∧ 𝑁 ∈ 𝑌) → (1st ‘⟨𝑀, 𝑁⟩) = 𝑀) | |
16 | 8, 9, 15 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (1st ‘⟨𝑀, 𝑁⟩) = 𝑀) |
17 | op1stg 7983 | . . . . 5 ⊢ ((𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌) → (1st ‘⟨𝑃, 𝑄⟩) = 𝑃) | |
18 | 11, 12, 17 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (1st ‘⟨𝑃, 𝑄⟩) = 𝑃) |
19 | 16, 18 | oveq12d 7422 | . . 3 ⊢ (𝜑 → ((1st ‘⟨𝑀, 𝑁⟩)𝐻(1st ‘⟨𝑃, 𝑄⟩)) = (𝑀𝐻𝑃)) |
20 | op2ndg 7984 | . . . . 5 ⊢ ((𝑀 ∈ 𝑋 ∧ 𝑁 ∈ 𝑌) → (2nd ‘⟨𝑀, 𝑁⟩) = 𝑁) | |
21 | 8, 9, 20 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (2nd ‘⟨𝑀, 𝑁⟩) = 𝑁) |
22 | op2ndg 7984 | . . . . 5 ⊢ ((𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑌) → (2nd ‘⟨𝑃, 𝑄⟩) = 𝑄) | |
23 | 11, 12, 22 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (2nd ‘⟨𝑃, 𝑄⟩) = 𝑄) |
24 | 21, 23 | oveq12d 7422 | . . 3 ⊢ (𝜑 → ((2nd ‘⟨𝑀, 𝑁⟩)𝐽(2nd ‘⟨𝑃, 𝑄⟩)) = (𝑁𝐽𝑄)) |
25 | 19, 24 | xpeq12d 5700 | . 2 ⊢ (𝜑 → (((1st ‘⟨𝑀, 𝑁⟩)𝐻(1st ‘⟨𝑃, 𝑄⟩)) × ((2nd ‘⟨𝑀, 𝑁⟩)𝐽(2nd ‘⟨𝑃, 𝑄⟩))) = ((𝑀𝐻𝑃) × (𝑁𝐽𝑄))) |
26 | 14, 25 | eqtrd 2766 | 1 ⊢ (𝜑 → (⟨𝑀, 𝑁⟩𝐾⟨𝑃, 𝑄⟩) = ((𝑀𝐻𝑃) × (𝑁𝐽𝑄))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ⟨cop 4629 × cxp 5667 ‘cfv 6536 (class class class)co 7404 1st c1st 7969 2nd c2nd 7970 Basecbs 17151 Hom chom 17215 ×c cxpc 18130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-7 12281 df-8 12282 df-9 12283 df-n0 12474 df-z 12560 df-dec 12679 df-uz 12824 df-fz 13488 df-struct 17087 df-slot 17122 df-ndx 17134 df-base 17152 df-hom 17228 df-cco 17229 df-xpc 18134 |
This theorem is referenced by: xpcco2 18149 prfcl 18165 evlfcl 18185 curf1cl 18191 curf2cl 18194 curfcl 18195 uncf2 18200 uncfcurf 18202 diag12 18207 diag2 18208 curf2ndf 18210 yonedalem22 18241 yonedalem3b 18242 |
Copyright terms: Public domain | W3C validator |