MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpchom2 Structured version   Visualization version   GIF version

Theorem xpchom2 17884
Description: Value of the set of morphisms in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
xpcco2.t 𝑇 = (𝐶 ×c 𝐷)
xpcco2.x 𝑋 = (Base‘𝐶)
xpcco2.y 𝑌 = (Base‘𝐷)
xpcco2.h 𝐻 = (Hom ‘𝐶)
xpcco2.j 𝐽 = (Hom ‘𝐷)
xpcco2.m (𝜑𝑀𝑋)
xpcco2.n (𝜑𝑁𝑌)
xpcco2.p (𝜑𝑃𝑋)
xpcco2.q (𝜑𝑄𝑌)
xpchom2.k 𝐾 = (Hom ‘𝑇)
Assertion
Ref Expression
xpchom2 (𝜑 → (⟨𝑀, 𝑁𝐾𝑃, 𝑄⟩) = ((𝑀𝐻𝑃) × (𝑁𝐽𝑄)))

Proof of Theorem xpchom2
StepHypRef Expression
1 xpcco2.t . . 3 𝑇 = (𝐶 ×c 𝐷)
2 xpcco2.x . . . 4 𝑋 = (Base‘𝐶)
3 xpcco2.y . . . 4 𝑌 = (Base‘𝐷)
41, 2, 3xpcbas 17876 . . 3 (𝑋 × 𝑌) = (Base‘𝑇)
5 xpcco2.h . . 3 𝐻 = (Hom ‘𝐶)
6 xpcco2.j . . 3 𝐽 = (Hom ‘𝐷)
7 xpchom2.k . . 3 𝐾 = (Hom ‘𝑇)
8 xpcco2.m . . . 4 (𝜑𝑀𝑋)
9 xpcco2.n . . . 4 (𝜑𝑁𝑌)
108, 9opelxpd 5626 . . 3 (𝜑 → ⟨𝑀, 𝑁⟩ ∈ (𝑋 × 𝑌))
11 xpcco2.p . . . 4 (𝜑𝑃𝑋)
12 xpcco2.q . . . 4 (𝜑𝑄𝑌)
1311, 12opelxpd 5626 . . 3 (𝜑 → ⟨𝑃, 𝑄⟩ ∈ (𝑋 × 𝑌))
141, 4, 5, 6, 7, 10, 13xpchom 17878 . 2 (𝜑 → (⟨𝑀, 𝑁𝐾𝑃, 𝑄⟩) = (((1st ‘⟨𝑀, 𝑁⟩)𝐻(1st ‘⟨𝑃, 𝑄⟩)) × ((2nd ‘⟨𝑀, 𝑁⟩)𝐽(2nd ‘⟨𝑃, 𝑄⟩))))
15 op1stg 7829 . . . . 5 ((𝑀𝑋𝑁𝑌) → (1st ‘⟨𝑀, 𝑁⟩) = 𝑀)
168, 9, 15syl2anc 583 . . . 4 (𝜑 → (1st ‘⟨𝑀, 𝑁⟩) = 𝑀)
17 op1stg 7829 . . . . 5 ((𝑃𝑋𝑄𝑌) → (1st ‘⟨𝑃, 𝑄⟩) = 𝑃)
1811, 12, 17syl2anc 583 . . . 4 (𝜑 → (1st ‘⟨𝑃, 𝑄⟩) = 𝑃)
1916, 18oveq12d 7286 . . 3 (𝜑 → ((1st ‘⟨𝑀, 𝑁⟩)𝐻(1st ‘⟨𝑃, 𝑄⟩)) = (𝑀𝐻𝑃))
20 op2ndg 7830 . . . . 5 ((𝑀𝑋𝑁𝑌) → (2nd ‘⟨𝑀, 𝑁⟩) = 𝑁)
218, 9, 20syl2anc 583 . . . 4 (𝜑 → (2nd ‘⟨𝑀, 𝑁⟩) = 𝑁)
22 op2ndg 7830 . . . . 5 ((𝑃𝑋𝑄𝑌) → (2nd ‘⟨𝑃, 𝑄⟩) = 𝑄)
2311, 12, 22syl2anc 583 . . . 4 (𝜑 → (2nd ‘⟨𝑃, 𝑄⟩) = 𝑄)
2421, 23oveq12d 7286 . . 3 (𝜑 → ((2nd ‘⟨𝑀, 𝑁⟩)𝐽(2nd ‘⟨𝑃, 𝑄⟩)) = (𝑁𝐽𝑄))
2519, 24xpeq12d 5619 . 2 (𝜑 → (((1st ‘⟨𝑀, 𝑁⟩)𝐻(1st ‘⟨𝑃, 𝑄⟩)) × ((2nd ‘⟨𝑀, 𝑁⟩)𝐽(2nd ‘⟨𝑃, 𝑄⟩))) = ((𝑀𝐻𝑃) × (𝑁𝐽𝑄)))
2614, 25eqtrd 2779 1 (𝜑 → (⟨𝑀, 𝑁𝐾𝑃, 𝑄⟩) = ((𝑀𝐻𝑃) × (𝑁𝐽𝑄)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2109  cop 4572   × cxp 5586  cfv 6430  (class class class)co 7268  1st c1st 7815  2nd c2nd 7816  Basecbs 16893  Hom chom 16954   ×c cxpc 17866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-7 12024  df-8 12025  df-9 12026  df-n0 12217  df-z 12303  df-dec 12420  df-uz 12565  df-fz 13222  df-struct 16829  df-slot 16864  df-ndx 16876  df-base 16894  df-hom 16967  df-cco 16968  df-xpc 17870
This theorem is referenced by:  xpcco2  17885  prfcl  17901  evlfcl  17921  curf1cl  17927  curf2cl  17930  curfcl  17931  uncf2  17936  uncfcurf  17938  diag12  17943  diag2  17944  curf2ndf  17946  yonedalem22  17977  yonedalem3b  17978
  Copyright terms: Public domain W3C validator