MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmsxps Structured version   Visualization version   GIF version

Theorem tmsxps 24389
Description: Express the product of two metrics as another metric. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
tmsxps.p 𝑃 = (dist‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))
tmsxps.1 (𝜑𝑀 ∈ (∞Met‘𝑋))
tmsxps.2 (𝜑𝑁 ∈ (∞Met‘𝑌))
Assertion
Ref Expression
tmsxps (𝜑𝑃 ∈ (∞Met‘(𝑋 × 𝑌)))

Proof of Theorem tmsxps
StepHypRef Expression
1 eqid 2724 . . . . 5 ((toMetSp‘𝑀) ×s (toMetSp‘𝑁)) = ((toMetSp‘𝑀) ×s (toMetSp‘𝑁))
2 eqid 2724 . . . . 5 (Base‘(toMetSp‘𝑀)) = (Base‘(toMetSp‘𝑀))
3 eqid 2724 . . . . 5 (Base‘(toMetSp‘𝑁)) = (Base‘(toMetSp‘𝑁))
4 tmsxps.1 . . . . . 6 (𝜑𝑀 ∈ (∞Met‘𝑋))
5 eqid 2724 . . . . . . 7 (toMetSp‘𝑀) = (toMetSp‘𝑀)
65tmsxms 24339 . . . . . 6 (𝑀 ∈ (∞Met‘𝑋) → (toMetSp‘𝑀) ∈ ∞MetSp)
74, 6syl 17 . . . . 5 (𝜑 → (toMetSp‘𝑀) ∈ ∞MetSp)
8 tmsxps.2 . . . . . 6 (𝜑𝑁 ∈ (∞Met‘𝑌))
9 eqid 2724 . . . . . . 7 (toMetSp‘𝑁) = (toMetSp‘𝑁)
109tmsxms 24339 . . . . . 6 (𝑁 ∈ (∞Met‘𝑌) → (toMetSp‘𝑁) ∈ ∞MetSp)
118, 10syl 17 . . . . 5 (𝜑 → (toMetSp‘𝑁) ∈ ∞MetSp)
12 tmsxps.p . . . . 5 𝑃 = (dist‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))
131, 2, 3, 7, 11, 12xpsdsfn2 24228 . . . 4 (𝜑𝑃 Fn ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))))
14 fnresdm 6660 . . . 4 (𝑃 Fn ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))) → (𝑃 ↾ ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))))) = 𝑃)
1513, 14syl 17 . . 3 (𝜑 → (𝑃 ↾ ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))))) = 𝑃)
161xpsxms 24387 . . . . 5 (((toMetSp‘𝑀) ∈ ∞MetSp ∧ (toMetSp‘𝑁) ∈ ∞MetSp) → ((toMetSp‘𝑀) ×s (toMetSp‘𝑁)) ∈ ∞MetSp)
177, 11, 16syl2anc 583 . . . 4 (𝜑 → ((toMetSp‘𝑀) ×s (toMetSp‘𝑁)) ∈ ∞MetSp)
18 eqid 2724 . . . . 5 (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) = (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))
1918, 12xmsxmet2 24309 . . . 4 (((toMetSp‘𝑀) ×s (toMetSp‘𝑁)) ∈ ∞MetSp → (𝑃 ↾ ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))))) ∈ (∞Met‘(Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))))
2017, 19syl 17 . . 3 (𝜑 → (𝑃 ↾ ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))))) ∈ (∞Met‘(Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))))
2115, 20eqeltrrd 2826 . 2 (𝜑𝑃 ∈ (∞Met‘(Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))))
225tmsbas 24336 . . . . . 6 (𝑀 ∈ (∞Met‘𝑋) → 𝑋 = (Base‘(toMetSp‘𝑀)))
234, 22syl 17 . . . . 5 (𝜑𝑋 = (Base‘(toMetSp‘𝑀)))
249tmsbas 24336 . . . . . 6 (𝑁 ∈ (∞Met‘𝑌) → 𝑌 = (Base‘(toMetSp‘𝑁)))
258, 24syl 17 . . . . 5 (𝜑𝑌 = (Base‘(toMetSp‘𝑁)))
2623, 25xpeq12d 5698 . . . 4 (𝜑 → (𝑋 × 𝑌) = ((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑁))))
271, 2, 3, 7, 11xpsbas 17523 . . . 4 (𝜑 → ((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑁))) = (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))))
2826, 27eqtrd 2764 . . 3 (𝜑 → (𝑋 × 𝑌) = (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))))
2928fveq2d 6886 . 2 (𝜑 → (∞Met‘(𝑋 × 𝑌)) = (∞Met‘(Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))))
3021, 29eleqtrrd 2828 1 (𝜑𝑃 ∈ (∞Met‘(𝑋 × 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098   × cxp 5665  cres 5669   Fn wfn 6529  cfv 6534  (class class class)co 7402  Basecbs 17149  distcds 17211   ×s cxps 17457  ∞Metcxmet 21219  ∞MetSpcxms 24167  toMetSpctms 24169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-tp 4626  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-iin 4991  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-se 5623  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-isom 6543  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-of 7664  df-om 7850  df-1st 7969  df-2nd 7970  df-supp 8142  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8700  df-map 8819  df-ixp 8889  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-fsupp 9359  df-fi 9403  df-sup 9434  df-inf 9435  df-oi 9502  df-card 9931  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-z 12558  df-dec 12677  df-uz 12822  df-q 12932  df-rp 12976  df-xneg 13093  df-xadd 13094  df-xmul 13095  df-icc 13332  df-fz 13486  df-fzo 13629  df-seq 13968  df-hash 14292  df-struct 17085  df-sets 17102  df-slot 17120  df-ndx 17132  df-base 17150  df-ress 17179  df-plusg 17215  df-mulr 17216  df-sca 17218  df-vsca 17219  df-ip 17220  df-tset 17221  df-ple 17222  df-ds 17224  df-hom 17226  df-cco 17227  df-rest 17373  df-topn 17374  df-0g 17392  df-gsum 17393  df-topgen 17394  df-pt 17395  df-prds 17398  df-xrs 17453  df-qtop 17458  df-imas 17459  df-xps 17461  df-mre 17535  df-mrc 17536  df-acs 17538  df-mgm 18569  df-sgrp 18648  df-mnd 18664  df-submnd 18710  df-mulg 18992  df-cntz 19229  df-cmn 19698  df-psmet 21226  df-xmet 21227  df-bl 21229  df-mopn 21230  df-top 22740  df-topon 22757  df-topsp 22779  df-bases 22793  df-xms 24170  df-tms 24172
This theorem is referenced by:  txmetcnp  24400
  Copyright terms: Public domain W3C validator