| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tmsxps | Structured version Visualization version GIF version | ||
| Description: Express the product of two metrics as another metric. (Contributed by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| tmsxps.p | ⊢ 𝑃 = (dist‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) |
| tmsxps.1 | ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) |
| tmsxps.2 | ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) |
| Ref | Expression |
|---|---|
| tmsxps | ⊢ (𝜑 → 𝑃 ∈ (∞Met‘(𝑋 × 𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . . . 5 ⊢ ((toMetSp‘𝑀) ×s (toMetSp‘𝑁)) = ((toMetSp‘𝑀) ×s (toMetSp‘𝑁)) | |
| 2 | eqid 2733 | . . . . 5 ⊢ (Base‘(toMetSp‘𝑀)) = (Base‘(toMetSp‘𝑀)) | |
| 3 | eqid 2733 | . . . . 5 ⊢ (Base‘(toMetSp‘𝑁)) = (Base‘(toMetSp‘𝑁)) | |
| 4 | tmsxps.1 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) | |
| 5 | eqid 2733 | . . . . . . 7 ⊢ (toMetSp‘𝑀) = (toMetSp‘𝑀) | |
| 6 | 5 | tmsxms 24402 | . . . . . 6 ⊢ (𝑀 ∈ (∞Met‘𝑋) → (toMetSp‘𝑀) ∈ ∞MetSp) |
| 7 | 4, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → (toMetSp‘𝑀) ∈ ∞MetSp) |
| 8 | tmsxps.2 | . . . . . 6 ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) | |
| 9 | eqid 2733 | . . . . . . 7 ⊢ (toMetSp‘𝑁) = (toMetSp‘𝑁) | |
| 10 | 9 | tmsxms 24402 | . . . . . 6 ⊢ (𝑁 ∈ (∞Met‘𝑌) → (toMetSp‘𝑁) ∈ ∞MetSp) |
| 11 | 8, 10 | syl 17 | . . . . 5 ⊢ (𝜑 → (toMetSp‘𝑁) ∈ ∞MetSp) |
| 12 | tmsxps.p | . . . . 5 ⊢ 𝑃 = (dist‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) | |
| 13 | 1, 2, 3, 7, 11, 12 | xpsdsfn2 24294 | . . . 4 ⊢ (𝜑 → 𝑃 Fn ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))))) |
| 14 | fnresdm 6605 | . . . 4 ⊢ (𝑃 Fn ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))) → (𝑃 ↾ ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))))) = 𝑃) | |
| 15 | 13, 14 | syl 17 | . . 3 ⊢ (𝜑 → (𝑃 ↾ ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))))) = 𝑃) |
| 16 | 1 | xpsxms 24450 | . . . . 5 ⊢ (((toMetSp‘𝑀) ∈ ∞MetSp ∧ (toMetSp‘𝑁) ∈ ∞MetSp) → ((toMetSp‘𝑀) ×s (toMetSp‘𝑁)) ∈ ∞MetSp) |
| 17 | 7, 11, 16 | syl2anc 584 | . . . 4 ⊢ (𝜑 → ((toMetSp‘𝑀) ×s (toMetSp‘𝑁)) ∈ ∞MetSp) |
| 18 | eqid 2733 | . . . . 5 ⊢ (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) = (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) | |
| 19 | 18, 12 | xmsxmet2 24375 | . . . 4 ⊢ (((toMetSp‘𝑀) ×s (toMetSp‘𝑁)) ∈ ∞MetSp → (𝑃 ↾ ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))))) ∈ (∞Met‘(Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))))) |
| 20 | 17, 19 | syl 17 | . . 3 ⊢ (𝜑 → (𝑃 ↾ ((Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))) × (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))))) ∈ (∞Met‘(Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))))) |
| 21 | 15, 20 | eqeltrrd 2834 | . 2 ⊢ (𝜑 → 𝑃 ∈ (∞Met‘(Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))))) |
| 22 | 5 | tmsbas 24399 | . . . . . 6 ⊢ (𝑀 ∈ (∞Met‘𝑋) → 𝑋 = (Base‘(toMetSp‘𝑀))) |
| 23 | 4, 22 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑋 = (Base‘(toMetSp‘𝑀))) |
| 24 | 9 | tmsbas 24399 | . . . . . 6 ⊢ (𝑁 ∈ (∞Met‘𝑌) → 𝑌 = (Base‘(toMetSp‘𝑁))) |
| 25 | 8, 24 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑌 = (Base‘(toMetSp‘𝑁))) |
| 26 | 23, 25 | xpeq12d 5650 | . . . 4 ⊢ (𝜑 → (𝑋 × 𝑌) = ((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑁)))) |
| 27 | 1, 2, 3, 7, 11 | xpsbas 17478 | . . . 4 ⊢ (𝜑 → ((Base‘(toMetSp‘𝑀)) × (Base‘(toMetSp‘𝑁))) = (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))) |
| 28 | 26, 27 | eqtrd 2768 | . . 3 ⊢ (𝜑 → (𝑋 × 𝑌) = (Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁)))) |
| 29 | 28 | fveq2d 6832 | . 2 ⊢ (𝜑 → (∞Met‘(𝑋 × 𝑌)) = (∞Met‘(Base‘((toMetSp‘𝑀) ×s (toMetSp‘𝑁))))) |
| 30 | 21, 29 | eleqtrrd 2836 | 1 ⊢ (𝜑 → 𝑃 ∈ (∞Met‘(𝑋 × 𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 × cxp 5617 ↾ cres 5621 Fn wfn 6481 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 distcds 17172 ×s cxps 17412 ∞Metcxmet 21278 ∞MetSpcxms 24233 toMetSpctms 24235 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-fi 9302 df-sup 9333 df-inf 9334 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-q 12849 df-rp 12893 df-xneg 13013 df-xadd 13014 df-xmul 13015 df-icc 13254 df-fz 13410 df-fzo 13557 df-seq 13911 df-hash 14240 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ds 17185 df-hom 17187 df-cco 17188 df-rest 17328 df-topn 17329 df-0g 17347 df-gsum 17348 df-topgen 17349 df-pt 17350 df-prds 17353 df-xrs 17408 df-qtop 17413 df-imas 17414 df-xps 17416 df-mre 17490 df-mrc 17491 df-acs 17493 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-mulg 18983 df-cntz 19231 df-cmn 19696 df-psmet 21285 df-xmet 21286 df-bl 21288 df-mopn 21289 df-top 22810 df-topon 22827 df-topsp 22849 df-bases 22862 df-xms 24236 df-tms 24238 |
| This theorem is referenced by: txmetcnp 24463 |
| Copyright terms: Public domain | W3C validator |