| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpchom | Structured version Visualization version GIF version | ||
| Description: Set of morphisms of the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| xpchomfval.t | ⊢ 𝑇 = (𝐶 ×c 𝐷) |
| xpchomfval.y | ⊢ 𝐵 = (Base‘𝑇) |
| xpchomfval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| xpchomfval.j | ⊢ 𝐽 = (Hom ‘𝐷) |
| xpchomfval.k | ⊢ 𝐾 = (Hom ‘𝑇) |
| xpchom.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| xpchom.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| xpchom | ⊢ (𝜑 → (𝑋𝐾𝑌) = (((1st ‘𝑋)𝐻(1st ‘𝑌)) × ((2nd ‘𝑋)𝐽(2nd ‘𝑌)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpchom.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 2 | xpchom.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 3 | simpl 482 | . . . . . 6 ⊢ ((𝑢 = 𝑋 ∧ 𝑣 = 𝑌) → 𝑢 = 𝑋) | |
| 4 | 3 | fveq2d 6835 | . . . . 5 ⊢ ((𝑢 = 𝑋 ∧ 𝑣 = 𝑌) → (1st ‘𝑢) = (1st ‘𝑋)) |
| 5 | simpr 484 | . . . . . 6 ⊢ ((𝑢 = 𝑋 ∧ 𝑣 = 𝑌) → 𝑣 = 𝑌) | |
| 6 | 5 | fveq2d 6835 | . . . . 5 ⊢ ((𝑢 = 𝑋 ∧ 𝑣 = 𝑌) → (1st ‘𝑣) = (1st ‘𝑌)) |
| 7 | 4, 6 | oveq12d 7373 | . . . 4 ⊢ ((𝑢 = 𝑋 ∧ 𝑣 = 𝑌) → ((1st ‘𝑢)𝐻(1st ‘𝑣)) = ((1st ‘𝑋)𝐻(1st ‘𝑌))) |
| 8 | 3 | fveq2d 6835 | . . . . 5 ⊢ ((𝑢 = 𝑋 ∧ 𝑣 = 𝑌) → (2nd ‘𝑢) = (2nd ‘𝑋)) |
| 9 | 5 | fveq2d 6835 | . . . . 5 ⊢ ((𝑢 = 𝑋 ∧ 𝑣 = 𝑌) → (2nd ‘𝑣) = (2nd ‘𝑌)) |
| 10 | 8, 9 | oveq12d 7373 | . . . 4 ⊢ ((𝑢 = 𝑋 ∧ 𝑣 = 𝑌) → ((2nd ‘𝑢)𝐽(2nd ‘𝑣)) = ((2nd ‘𝑋)𝐽(2nd ‘𝑌))) |
| 11 | 7, 10 | xpeq12d 5652 | . . 3 ⊢ ((𝑢 = 𝑋 ∧ 𝑣 = 𝑌) → (((1st ‘𝑢)𝐻(1st ‘𝑣)) × ((2nd ‘𝑢)𝐽(2nd ‘𝑣))) = (((1st ‘𝑋)𝐻(1st ‘𝑌)) × ((2nd ‘𝑋)𝐽(2nd ‘𝑌)))) |
| 12 | xpchomfval.t | . . . 4 ⊢ 𝑇 = (𝐶 ×c 𝐷) | |
| 13 | xpchomfval.y | . . . 4 ⊢ 𝐵 = (Base‘𝑇) | |
| 14 | xpchomfval.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 15 | xpchomfval.j | . . . 4 ⊢ 𝐽 = (Hom ‘𝐷) | |
| 16 | xpchomfval.k | . . . 4 ⊢ 𝐾 = (Hom ‘𝑇) | |
| 17 | 12, 13, 14, 15, 16 | xpchomfval 18093 | . . 3 ⊢ 𝐾 = (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (((1st ‘𝑢)𝐻(1st ‘𝑣)) × ((2nd ‘𝑢)𝐽(2nd ‘𝑣)))) |
| 18 | ovex 7388 | . . . 4 ⊢ ((1st ‘𝑋)𝐻(1st ‘𝑌)) ∈ V | |
| 19 | ovex 7388 | . . . 4 ⊢ ((2nd ‘𝑋)𝐽(2nd ‘𝑌)) ∈ V | |
| 20 | 18, 19 | xpex 7695 | . . 3 ⊢ (((1st ‘𝑋)𝐻(1st ‘𝑌)) × ((2nd ‘𝑋)𝐽(2nd ‘𝑌))) ∈ V |
| 21 | 11, 17, 20 | ovmpoa 7510 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐾𝑌) = (((1st ‘𝑋)𝐻(1st ‘𝑌)) × ((2nd ‘𝑋)𝐽(2nd ‘𝑌)))) |
| 22 | 1, 2, 21 | syl2anc 584 | 1 ⊢ (𝜑 → (𝑋𝐾𝑌) = (((1st ‘𝑋)𝐻(1st ‘𝑌)) × ((2nd ‘𝑋)𝐽(2nd ‘𝑌)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 × cxp 5619 ‘cfv 6489 (class class class)co 7355 1st c1st 7928 2nd c2nd 7929 Basecbs 17127 Hom chom 17179 ×c cxpc 18082 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-fz 13415 df-struct 17065 df-slot 17100 df-ndx 17112 df-base 17128 df-hom 17192 df-cco 17193 df-xpc 18086 |
| This theorem is referenced by: xpchom2 18100 xpccatid 18102 1stfcl 18111 2ndfcl 18112 xpcpropd 18122 evlfcl 18136 curf1cl 18142 hofcl 18173 yonedalem3 18194 xpcfuchom 49415 dfswapf2 49422 swapf2a 49432 swapf2f1oaALT 49439 oppc1stf 49449 oppc2ndf 49450 |
| Copyright terms: Public domain | W3C validator |