MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpchom Structured version   Visualization version   GIF version

Theorem xpchom 18142
Description: Set of morphisms of the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.)
Hypotheses
Ref Expression
xpchomfval.t 𝑇 = (𝐶 ×c 𝐷)
xpchomfval.y 𝐵 = (Base‘𝑇)
xpchomfval.h 𝐻 = (Hom ‘𝐶)
xpchomfval.j 𝐽 = (Hom ‘𝐷)
xpchomfval.k 𝐾 = (Hom ‘𝑇)
xpchom.x (𝜑𝑋𝐵)
xpchom.y (𝜑𝑌𝐵)
Assertion
Ref Expression
xpchom (𝜑 → (𝑋𝐾𝑌) = (((1st𝑋)𝐻(1st𝑌)) × ((2nd𝑋)𝐽(2nd𝑌))))

Proof of Theorem xpchom
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpchom.x . 2 (𝜑𝑋𝐵)
2 xpchom.y . 2 (𝜑𝑌𝐵)
3 simpl 482 . . . . . 6 ((𝑢 = 𝑋𝑣 = 𝑌) → 𝑢 = 𝑋)
43fveq2d 6888 . . . . 5 ((𝑢 = 𝑋𝑣 = 𝑌) → (1st𝑢) = (1st𝑋))
5 simpr 484 . . . . . 6 ((𝑢 = 𝑋𝑣 = 𝑌) → 𝑣 = 𝑌)
65fveq2d 6888 . . . . 5 ((𝑢 = 𝑋𝑣 = 𝑌) → (1st𝑣) = (1st𝑌))
74, 6oveq12d 7422 . . . 4 ((𝑢 = 𝑋𝑣 = 𝑌) → ((1st𝑢)𝐻(1st𝑣)) = ((1st𝑋)𝐻(1st𝑌)))
83fveq2d 6888 . . . . 5 ((𝑢 = 𝑋𝑣 = 𝑌) → (2nd𝑢) = (2nd𝑋))
95fveq2d 6888 . . . . 5 ((𝑢 = 𝑋𝑣 = 𝑌) → (2nd𝑣) = (2nd𝑌))
108, 9oveq12d 7422 . . . 4 ((𝑢 = 𝑋𝑣 = 𝑌) → ((2nd𝑢)𝐽(2nd𝑣)) = ((2nd𝑋)𝐽(2nd𝑌)))
117, 10xpeq12d 5700 . . 3 ((𝑢 = 𝑋𝑣 = 𝑌) → (((1st𝑢)𝐻(1st𝑣)) × ((2nd𝑢)𝐽(2nd𝑣))) = (((1st𝑋)𝐻(1st𝑌)) × ((2nd𝑋)𝐽(2nd𝑌))))
12 xpchomfval.t . . . 4 𝑇 = (𝐶 ×c 𝐷)
13 xpchomfval.y . . . 4 𝐵 = (Base‘𝑇)
14 xpchomfval.h . . . 4 𝐻 = (Hom ‘𝐶)
15 xpchomfval.j . . . 4 𝐽 = (Hom ‘𝐷)
16 xpchomfval.k . . . 4 𝐾 = (Hom ‘𝑇)
1712, 13, 14, 15, 16xpchomfval 18141 . . 3 𝐾 = (𝑢𝐵, 𝑣𝐵 ↦ (((1st𝑢)𝐻(1st𝑣)) × ((2nd𝑢)𝐽(2nd𝑣))))
18 ovex 7437 . . . 4 ((1st𝑋)𝐻(1st𝑌)) ∈ V
19 ovex 7437 . . . 4 ((2nd𝑋)𝐽(2nd𝑌)) ∈ V
2018, 19xpex 7736 . . 3 (((1st𝑋)𝐻(1st𝑌)) × ((2nd𝑋)𝐽(2nd𝑌))) ∈ V
2111, 17, 20ovmpoa 7558 . 2 ((𝑋𝐵𝑌𝐵) → (𝑋𝐾𝑌) = (((1st𝑋)𝐻(1st𝑌)) × ((2nd𝑋)𝐽(2nd𝑌))))
221, 2, 21syl2anc 583 1 (𝜑 → (𝑋𝐾𝑌) = (((1st𝑋)𝐻(1st𝑌)) × ((2nd𝑋)𝐽(2nd𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098   × cxp 5667  cfv 6536  (class class class)co 7404  1st c1st 7969  2nd c2nd 7970  Basecbs 17151  Hom chom 17215   ×c cxpc 18130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-1o 8464  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-nn 12214  df-2 12276  df-3 12277  df-4 12278  df-5 12279  df-6 12280  df-7 12281  df-8 12282  df-9 12283  df-n0 12474  df-z 12560  df-dec 12679  df-uz 12824  df-fz 13488  df-struct 17087  df-slot 17122  df-ndx 17134  df-base 17152  df-hom 17228  df-cco 17229  df-xpc 18134
This theorem is referenced by:  xpchom2  18148  xpccatid  18150  1stfcl  18159  2ndfcl  18160  xpcpropd  18171  evlfcl  18185  curf1cl  18191  hofcl  18222  yonedalem3  18243
  Copyright terms: Public domain W3C validator