![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpchom | Structured version Visualization version GIF version |
Description: Set of morphisms of the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
xpchomfval.t | ⊢ 𝑇 = (𝐶 ×c 𝐷) |
xpchomfval.y | ⊢ 𝐵 = (Base‘𝑇) |
xpchomfval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
xpchomfval.j | ⊢ 𝐽 = (Hom ‘𝐷) |
xpchomfval.k | ⊢ 𝐾 = (Hom ‘𝑇) |
xpchom.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
xpchom.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
xpchom | ⊢ (𝜑 → (𝑋𝐾𝑌) = (((1st ‘𝑋)𝐻(1st ‘𝑌)) × ((2nd ‘𝑋)𝐽(2nd ‘𝑌)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpchom.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
2 | xpchom.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
3 | simpl 475 | . . . . . 6 ⊢ ((𝑢 = 𝑋 ∧ 𝑣 = 𝑌) → 𝑢 = 𝑋) | |
4 | 3 | fveq2d 6416 | . . . . 5 ⊢ ((𝑢 = 𝑋 ∧ 𝑣 = 𝑌) → (1st ‘𝑢) = (1st ‘𝑋)) |
5 | simpr 478 | . . . . . 6 ⊢ ((𝑢 = 𝑋 ∧ 𝑣 = 𝑌) → 𝑣 = 𝑌) | |
6 | 5 | fveq2d 6416 | . . . . 5 ⊢ ((𝑢 = 𝑋 ∧ 𝑣 = 𝑌) → (1st ‘𝑣) = (1st ‘𝑌)) |
7 | 4, 6 | oveq12d 6897 | . . . 4 ⊢ ((𝑢 = 𝑋 ∧ 𝑣 = 𝑌) → ((1st ‘𝑢)𝐻(1st ‘𝑣)) = ((1st ‘𝑋)𝐻(1st ‘𝑌))) |
8 | 3 | fveq2d 6416 | . . . . 5 ⊢ ((𝑢 = 𝑋 ∧ 𝑣 = 𝑌) → (2nd ‘𝑢) = (2nd ‘𝑋)) |
9 | 5 | fveq2d 6416 | . . . . 5 ⊢ ((𝑢 = 𝑋 ∧ 𝑣 = 𝑌) → (2nd ‘𝑣) = (2nd ‘𝑌)) |
10 | 8, 9 | oveq12d 6897 | . . . 4 ⊢ ((𝑢 = 𝑋 ∧ 𝑣 = 𝑌) → ((2nd ‘𝑢)𝐽(2nd ‘𝑣)) = ((2nd ‘𝑋)𝐽(2nd ‘𝑌))) |
11 | 7, 10 | xpeq12d 5344 | . . 3 ⊢ ((𝑢 = 𝑋 ∧ 𝑣 = 𝑌) → (((1st ‘𝑢)𝐻(1st ‘𝑣)) × ((2nd ‘𝑢)𝐽(2nd ‘𝑣))) = (((1st ‘𝑋)𝐻(1st ‘𝑌)) × ((2nd ‘𝑋)𝐽(2nd ‘𝑌)))) |
12 | xpchomfval.t | . . . 4 ⊢ 𝑇 = (𝐶 ×c 𝐷) | |
13 | xpchomfval.y | . . . 4 ⊢ 𝐵 = (Base‘𝑇) | |
14 | xpchomfval.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
15 | xpchomfval.j | . . . 4 ⊢ 𝐽 = (Hom ‘𝐷) | |
16 | xpchomfval.k | . . . 4 ⊢ 𝐾 = (Hom ‘𝑇) | |
17 | 12, 13, 14, 15, 16 | xpchomfval 17133 | . . 3 ⊢ 𝐾 = (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (((1st ‘𝑢)𝐻(1st ‘𝑣)) × ((2nd ‘𝑢)𝐽(2nd ‘𝑣)))) |
18 | ovex 6911 | . . . 4 ⊢ ((1st ‘𝑋)𝐻(1st ‘𝑌)) ∈ V | |
19 | ovex 6911 | . . . 4 ⊢ ((2nd ‘𝑋)𝐽(2nd ‘𝑌)) ∈ V | |
20 | 18, 19 | xpex 7197 | . . 3 ⊢ (((1st ‘𝑋)𝐻(1st ‘𝑌)) × ((2nd ‘𝑋)𝐽(2nd ‘𝑌))) ∈ V |
21 | 11, 17, 20 | ovmpt2a 7026 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐾𝑌) = (((1st ‘𝑋)𝐻(1st ‘𝑌)) × ((2nd ‘𝑋)𝐽(2nd ‘𝑌)))) |
22 | 1, 2, 21 | syl2anc 580 | 1 ⊢ (𝜑 → (𝑋𝐾𝑌) = (((1st ‘𝑋)𝐻(1st ‘𝑌)) × ((2nd ‘𝑋)𝐽(2nd ‘𝑌)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 × cxp 5311 ‘cfv 6102 (class class class)co 6879 1st c1st 7400 2nd c2nd 7401 Basecbs 16183 Hom chom 16277 ×c cxpc 17122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-rep 4965 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 ax-cnex 10281 ax-resscn 10282 ax-1cn 10283 ax-icn 10284 ax-addcl 10285 ax-addrcl 10286 ax-mulcl 10287 ax-mulrcl 10288 ax-mulcom 10289 ax-addass 10290 ax-mulass 10291 ax-distr 10292 ax-i2m1 10293 ax-1ne0 10294 ax-1rid 10295 ax-rnegex 10296 ax-rrecex 10297 ax-cnre 10298 ax-pre-lttri 10299 ax-pre-lttrn 10300 ax-pre-ltadd 10301 ax-pre-mulgt0 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-pss 3786 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-tp 4374 df-op 4376 df-uni 4630 df-int 4669 df-iun 4713 df-br 4845 df-opab 4907 df-mpt 4924 df-tr 4947 df-id 5221 df-eprel 5226 df-po 5234 df-so 5235 df-fr 5272 df-we 5274 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-pred 5899 df-ord 5945 df-on 5946 df-lim 5947 df-suc 5948 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-riota 6840 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-om 7301 df-1st 7402 df-2nd 7403 df-wrecs 7646 df-recs 7708 df-rdg 7746 df-1o 7800 df-oadd 7804 df-er 7983 df-en 8197 df-dom 8198 df-sdom 8199 df-fin 8200 df-pnf 10366 df-mnf 10367 df-xr 10368 df-ltxr 10369 df-le 10370 df-sub 10559 df-neg 10560 df-nn 11314 df-2 11375 df-3 11376 df-4 11377 df-5 11378 df-6 11379 df-7 11380 df-8 11381 df-9 11382 df-n0 11580 df-z 11666 df-dec 11783 df-uz 11930 df-fz 12580 df-struct 16185 df-ndx 16186 df-slot 16187 df-base 16189 df-hom 16290 df-cco 16291 df-xpc 17126 |
This theorem is referenced by: xpchom2 17140 xpccatid 17142 1stfcl 17151 2ndfcl 17152 xpcpropd 17162 evlfcl 17176 curf1cl 17182 hofcl 17213 yonedalem3 17234 |
Copyright terms: Public domain | W3C validator |