| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpchom | Structured version Visualization version GIF version | ||
| Description: Set of morphisms of the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| xpchomfval.t | ⊢ 𝑇 = (𝐶 ×c 𝐷) |
| xpchomfval.y | ⊢ 𝐵 = (Base‘𝑇) |
| xpchomfval.h | ⊢ 𝐻 = (Hom ‘𝐶) |
| xpchomfval.j | ⊢ 𝐽 = (Hom ‘𝐷) |
| xpchomfval.k | ⊢ 𝐾 = (Hom ‘𝑇) |
| xpchom.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| xpchom.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| xpchom | ⊢ (𝜑 → (𝑋𝐾𝑌) = (((1st ‘𝑋)𝐻(1st ‘𝑌)) × ((2nd ‘𝑋)𝐽(2nd ‘𝑌)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpchom.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 2 | xpchom.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 3 | simpl 482 | . . . . . 6 ⊢ ((𝑢 = 𝑋 ∧ 𝑣 = 𝑌) → 𝑢 = 𝑋) | |
| 4 | 3 | fveq2d 6879 | . . . . 5 ⊢ ((𝑢 = 𝑋 ∧ 𝑣 = 𝑌) → (1st ‘𝑢) = (1st ‘𝑋)) |
| 5 | simpr 484 | . . . . . 6 ⊢ ((𝑢 = 𝑋 ∧ 𝑣 = 𝑌) → 𝑣 = 𝑌) | |
| 6 | 5 | fveq2d 6879 | . . . . 5 ⊢ ((𝑢 = 𝑋 ∧ 𝑣 = 𝑌) → (1st ‘𝑣) = (1st ‘𝑌)) |
| 7 | 4, 6 | oveq12d 7421 | . . . 4 ⊢ ((𝑢 = 𝑋 ∧ 𝑣 = 𝑌) → ((1st ‘𝑢)𝐻(1st ‘𝑣)) = ((1st ‘𝑋)𝐻(1st ‘𝑌))) |
| 8 | 3 | fveq2d 6879 | . . . . 5 ⊢ ((𝑢 = 𝑋 ∧ 𝑣 = 𝑌) → (2nd ‘𝑢) = (2nd ‘𝑋)) |
| 9 | 5 | fveq2d 6879 | . . . . 5 ⊢ ((𝑢 = 𝑋 ∧ 𝑣 = 𝑌) → (2nd ‘𝑣) = (2nd ‘𝑌)) |
| 10 | 8, 9 | oveq12d 7421 | . . . 4 ⊢ ((𝑢 = 𝑋 ∧ 𝑣 = 𝑌) → ((2nd ‘𝑢)𝐽(2nd ‘𝑣)) = ((2nd ‘𝑋)𝐽(2nd ‘𝑌))) |
| 11 | 7, 10 | xpeq12d 5685 | . . 3 ⊢ ((𝑢 = 𝑋 ∧ 𝑣 = 𝑌) → (((1st ‘𝑢)𝐻(1st ‘𝑣)) × ((2nd ‘𝑢)𝐽(2nd ‘𝑣))) = (((1st ‘𝑋)𝐻(1st ‘𝑌)) × ((2nd ‘𝑋)𝐽(2nd ‘𝑌)))) |
| 12 | xpchomfval.t | . . . 4 ⊢ 𝑇 = (𝐶 ×c 𝐷) | |
| 13 | xpchomfval.y | . . . 4 ⊢ 𝐵 = (Base‘𝑇) | |
| 14 | xpchomfval.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
| 15 | xpchomfval.j | . . . 4 ⊢ 𝐽 = (Hom ‘𝐷) | |
| 16 | xpchomfval.k | . . . 4 ⊢ 𝐾 = (Hom ‘𝑇) | |
| 17 | 12, 13, 14, 15, 16 | xpchomfval 18189 | . . 3 ⊢ 𝐾 = (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (((1st ‘𝑢)𝐻(1st ‘𝑣)) × ((2nd ‘𝑢)𝐽(2nd ‘𝑣)))) |
| 18 | ovex 7436 | . . . 4 ⊢ ((1st ‘𝑋)𝐻(1st ‘𝑌)) ∈ V | |
| 19 | ovex 7436 | . . . 4 ⊢ ((2nd ‘𝑋)𝐽(2nd ‘𝑌)) ∈ V | |
| 20 | 18, 19 | xpex 7745 | . . 3 ⊢ (((1st ‘𝑋)𝐻(1st ‘𝑌)) × ((2nd ‘𝑋)𝐽(2nd ‘𝑌))) ∈ V |
| 21 | 11, 17, 20 | ovmpoa 7560 | . 2 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐾𝑌) = (((1st ‘𝑋)𝐻(1st ‘𝑌)) × ((2nd ‘𝑋)𝐽(2nd ‘𝑌)))) |
| 22 | 1, 2, 21 | syl2anc 584 | 1 ⊢ (𝜑 → (𝑋𝐾𝑌) = (((1st ‘𝑋)𝐻(1st ‘𝑌)) × ((2nd ‘𝑋)𝐽(2nd ‘𝑌)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 × cxp 5652 ‘cfv 6530 (class class class)co 7403 1st c1st 7984 2nd c2nd 7985 Basecbs 17226 Hom chom 17280 ×c cxpc 18178 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-fz 13523 df-struct 17164 df-slot 17199 df-ndx 17211 df-base 17227 df-hom 17293 df-cco 17294 df-xpc 18182 |
| This theorem is referenced by: xpchom2 18196 xpccatid 18198 1stfcl 18207 2ndfcl 18208 xpcpropd 18218 evlfcl 18232 curf1cl 18238 hofcl 18269 yonedalem3 18290 xpcfuchom 49119 dfswapf2 49126 swapf2a 49136 swapf2f1oaALT 49143 |
| Copyright terms: Public domain | W3C validator |