| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > zdivgd | Structured version Visualization version GIF version | ||
| Description: Two ways to express "𝑁 is an integer multiple of 𝑀". Originally a subproof of zdiv 12580. (Contributed by SN, 25-Apr-2025.) |
| Ref | Expression |
|---|---|
| zdivgd.1 | ⊢ (𝜑 → 𝑀 ∈ ℂ) |
| zdivgd.2 | ⊢ (𝜑 → 𝑁 ∈ ℂ) |
| zdivgd.3 | ⊢ (𝜑 → 𝑀 ≠ 0) |
| Ref | Expression |
|---|---|
| zdivgd | ⊢ (𝜑 → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 12510 | . . . . . . 7 ⊢ (𝑘 ∈ ℤ → 𝑘 ∈ ℂ) | |
| 2 | 1 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℂ) |
| 3 | zdivgd.1 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℂ) | |
| 4 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → 𝑀 ∈ ℂ) |
| 5 | zdivgd.3 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ≠ 0) | |
| 6 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → 𝑀 ≠ 0) |
| 7 | 2, 4, 6 | divcan3d 11939 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → ((𝑀 · 𝑘) / 𝑀) = 𝑘) |
| 8 | oveq1 7376 | . . . . 5 ⊢ ((𝑀 · 𝑘) = 𝑁 → ((𝑀 · 𝑘) / 𝑀) = (𝑁 / 𝑀)) | |
| 9 | 7, 8 | sylan9req 2785 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ (𝑀 · 𝑘) = 𝑁) → 𝑘 = (𝑁 / 𝑀)) |
| 10 | simplr 768 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ (𝑀 · 𝑘) = 𝑁) → 𝑘 ∈ ℤ) | |
| 11 | 9, 10 | eqeltrrd 2829 | . . 3 ⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ (𝑀 · 𝑘) = 𝑁) → (𝑁 / 𝑀) ∈ ℤ) |
| 12 | 11 | rexlimdva2 3136 | . 2 ⊢ (𝜑 → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 → (𝑁 / 𝑀) ∈ ℤ)) |
| 13 | zdivgd.2 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℂ) | |
| 14 | 13, 3, 5 | divcan2d 11936 | . . 3 ⊢ (𝜑 → (𝑀 · (𝑁 / 𝑀)) = 𝑁) |
| 15 | oveq2 7377 | . . . . . 6 ⊢ (𝑘 = (𝑁 / 𝑀) → (𝑀 · 𝑘) = (𝑀 · (𝑁 / 𝑀))) | |
| 16 | 15 | eqeq1d 2731 | . . . . 5 ⊢ (𝑘 = (𝑁 / 𝑀) → ((𝑀 · 𝑘) = 𝑁 ↔ (𝑀 · (𝑁 / 𝑀)) = 𝑁)) |
| 17 | 16 | rspcev 3585 | . . . 4 ⊢ (((𝑁 / 𝑀) ∈ ℤ ∧ (𝑀 · (𝑁 / 𝑀)) = 𝑁) → ∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁) |
| 18 | 17 | ex 412 | . . 3 ⊢ ((𝑁 / 𝑀) ∈ ℤ → ((𝑀 · (𝑁 / 𝑀)) = 𝑁 → ∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁)) |
| 19 | 14, 18 | syl5com 31 | . 2 ⊢ (𝜑 → ((𝑁 / 𝑀) ∈ ℤ → ∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁)) |
| 20 | 12, 19 | impbid 212 | 1 ⊢ (𝜑 → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 (class class class)co 7369 ℂcc 11042 0cc0 11044 · cmul 11049 / cdiv 11811 ℤcz 12505 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-z 12506 |
| This theorem is referenced by: ef11d 42300 |
| Copyright terms: Public domain | W3C validator |