![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > zdivgd | Structured version Visualization version GIF version |
Description: Two ways to express "𝑁 is an integer multiple of 𝑀". Originally a subproof of zdiv 12670. (Contributed by SN, 25-Apr-2025.) |
Ref | Expression |
---|---|
zdivgd.1 | ⊢ (𝜑 → 𝑀 ∈ ℂ) |
zdivgd.2 | ⊢ (𝜑 → 𝑁 ∈ ℂ) |
zdivgd.3 | ⊢ (𝜑 → 𝑀 ≠ 0) |
Ref | Expression |
---|---|
zdivgd | ⊢ (𝜑 → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zcn 12601 | . . . . . . 7 ⊢ (𝑘 ∈ ℤ → 𝑘 ∈ ℂ) | |
2 | 1 | adantl 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℂ) |
3 | zdivgd.1 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℂ) | |
4 | 3 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → 𝑀 ∈ ℂ) |
5 | zdivgd.3 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ≠ 0) | |
6 | 5 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → 𝑀 ≠ 0) |
7 | 2, 4, 6 | divcan3d 12033 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → ((𝑀 · 𝑘) / 𝑀) = 𝑘) |
8 | oveq1 7433 | . . . . 5 ⊢ ((𝑀 · 𝑘) = 𝑁 → ((𝑀 · 𝑘) / 𝑀) = (𝑁 / 𝑀)) | |
9 | 7, 8 | sylan9req 2789 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ (𝑀 · 𝑘) = 𝑁) → 𝑘 = (𝑁 / 𝑀)) |
10 | simplr 767 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ (𝑀 · 𝑘) = 𝑁) → 𝑘 ∈ ℤ) | |
11 | 9, 10 | eqeltrrd 2830 | . . 3 ⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ (𝑀 · 𝑘) = 𝑁) → (𝑁 / 𝑀) ∈ ℤ) |
12 | 11 | rexlimdva2 3154 | . 2 ⊢ (𝜑 → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 → (𝑁 / 𝑀) ∈ ℤ)) |
13 | zdivgd.2 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℂ) | |
14 | 13, 3, 5 | divcan2d 12030 | . . 3 ⊢ (𝜑 → (𝑀 · (𝑁 / 𝑀)) = 𝑁) |
15 | oveq2 7434 | . . . . . 6 ⊢ (𝑘 = (𝑁 / 𝑀) → (𝑀 · 𝑘) = (𝑀 · (𝑁 / 𝑀))) | |
16 | 15 | eqeq1d 2730 | . . . . 5 ⊢ (𝑘 = (𝑁 / 𝑀) → ((𝑀 · 𝑘) = 𝑁 ↔ (𝑀 · (𝑁 / 𝑀)) = 𝑁)) |
17 | 16 | rspcev 3611 | . . . 4 ⊢ (((𝑁 / 𝑀) ∈ ℤ ∧ (𝑀 · (𝑁 / 𝑀)) = 𝑁) → ∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁) |
18 | 17 | ex 411 | . . 3 ⊢ ((𝑁 / 𝑀) ∈ ℤ → ((𝑀 · (𝑁 / 𝑀)) = 𝑁 → ∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁)) |
19 | 14, 18 | syl5com 31 | . 2 ⊢ (𝜑 → ((𝑁 / 𝑀) ∈ ℤ → ∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁)) |
20 | 12, 19 | impbid 211 | 1 ⊢ (𝜑 → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2937 ∃wrex 3067 (class class class)co 7426 ℂcc 11144 0cc0 11146 · cmul 11151 / cdiv 11909 ℤcz 12596 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-po 5594 df-so 5595 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-er 8731 df-en 8971 df-dom 8972 df-sdom 8973 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-div 11910 df-z 12597 |
This theorem is referenced by: ef11d 41941 |
Copyright terms: Public domain | W3C validator |