| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > zdivgd | Structured version Visualization version GIF version | ||
| Description: Two ways to express "𝑁 is an integer multiple of 𝑀". Originally a subproof of zdiv 12672. (Contributed by SN, 25-Apr-2025.) |
| Ref | Expression |
|---|---|
| zdivgd.1 | ⊢ (𝜑 → 𝑀 ∈ ℂ) |
| zdivgd.2 | ⊢ (𝜑 → 𝑁 ∈ ℂ) |
| zdivgd.3 | ⊢ (𝜑 → 𝑀 ≠ 0) |
| Ref | Expression |
|---|---|
| zdivgd | ⊢ (𝜑 → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 12602 | . . . . . . 7 ⊢ (𝑘 ∈ ℤ → 𝑘 ∈ ℂ) | |
| 2 | 1 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℂ) |
| 3 | zdivgd.1 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℂ) | |
| 4 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → 𝑀 ∈ ℂ) |
| 5 | zdivgd.3 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ≠ 0) | |
| 6 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → 𝑀 ≠ 0) |
| 7 | 2, 4, 6 | divcan3d 12031 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → ((𝑀 · 𝑘) / 𝑀) = 𝑘) |
| 8 | oveq1 7421 | . . . . 5 ⊢ ((𝑀 · 𝑘) = 𝑁 → ((𝑀 · 𝑘) / 𝑀) = (𝑁 / 𝑀)) | |
| 9 | 7, 8 | sylan9req 2790 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ (𝑀 · 𝑘) = 𝑁) → 𝑘 = (𝑁 / 𝑀)) |
| 10 | simplr 768 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ (𝑀 · 𝑘) = 𝑁) → 𝑘 ∈ ℤ) | |
| 11 | 9, 10 | eqeltrrd 2834 | . . 3 ⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ (𝑀 · 𝑘) = 𝑁) → (𝑁 / 𝑀) ∈ ℤ) |
| 12 | 11 | rexlimdva2 3144 | . 2 ⊢ (𝜑 → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 → (𝑁 / 𝑀) ∈ ℤ)) |
| 13 | zdivgd.2 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℂ) | |
| 14 | 13, 3, 5 | divcan2d 12028 | . . 3 ⊢ (𝜑 → (𝑀 · (𝑁 / 𝑀)) = 𝑁) |
| 15 | oveq2 7422 | . . . . . 6 ⊢ (𝑘 = (𝑁 / 𝑀) → (𝑀 · 𝑘) = (𝑀 · (𝑁 / 𝑀))) | |
| 16 | 15 | eqeq1d 2736 | . . . . 5 ⊢ (𝑘 = (𝑁 / 𝑀) → ((𝑀 · 𝑘) = 𝑁 ↔ (𝑀 · (𝑁 / 𝑀)) = 𝑁)) |
| 17 | 16 | rspcev 3606 | . . . 4 ⊢ (((𝑁 / 𝑀) ∈ ℤ ∧ (𝑀 · (𝑁 / 𝑀)) = 𝑁) → ∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁) |
| 18 | 17 | ex 412 | . . 3 ⊢ ((𝑁 / 𝑀) ∈ ℤ → ((𝑀 · (𝑁 / 𝑀)) = 𝑁 → ∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁)) |
| 19 | 14, 18 | syl5com 31 | . 2 ⊢ (𝜑 → ((𝑁 / 𝑀) ∈ ℤ → ∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁)) |
| 20 | 12, 19 | impbid 212 | 1 ⊢ (𝜑 → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 ∃wrex 3059 (class class class)co 7414 ℂcc 11136 0cc0 11138 · cmul 11143 / cdiv 11903 ℤcz 12597 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-po 5574 df-so 5575 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-div 11904 df-z 12598 |
| This theorem is referenced by: ef11d 42320 |
| Copyright terms: Public domain | W3C validator |