| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > zdivgd | Structured version Visualization version GIF version | ||
| Description: Two ways to express "𝑁 is an integer multiple of 𝑀". Originally a subproof of zdiv 12668. (Contributed by SN, 25-Apr-2025.) |
| Ref | Expression |
|---|---|
| zdivgd.1 | ⊢ (𝜑 → 𝑀 ∈ ℂ) |
| zdivgd.2 | ⊢ (𝜑 → 𝑁 ∈ ℂ) |
| zdivgd.3 | ⊢ (𝜑 → 𝑀 ≠ 0) |
| Ref | Expression |
|---|---|
| zdivgd | ⊢ (𝜑 → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zcn 12598 | . . . . . . 7 ⊢ (𝑘 ∈ ℤ → 𝑘 ∈ ℂ) | |
| 2 | 1 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → 𝑘 ∈ ℂ) |
| 3 | zdivgd.1 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℂ) | |
| 4 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → 𝑀 ∈ ℂ) |
| 5 | zdivgd.3 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ≠ 0) | |
| 6 | 5 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → 𝑀 ≠ 0) |
| 7 | 2, 4, 6 | divcan3d 12027 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ℤ) → ((𝑀 · 𝑘) / 𝑀) = 𝑘) |
| 8 | oveq1 7417 | . . . . 5 ⊢ ((𝑀 · 𝑘) = 𝑁 → ((𝑀 · 𝑘) / 𝑀) = (𝑁 / 𝑀)) | |
| 9 | 7, 8 | sylan9req 2792 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ (𝑀 · 𝑘) = 𝑁) → 𝑘 = (𝑁 / 𝑀)) |
| 10 | simplr 768 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ (𝑀 · 𝑘) = 𝑁) → 𝑘 ∈ ℤ) | |
| 11 | 9, 10 | eqeltrrd 2836 | . . 3 ⊢ (((𝜑 ∧ 𝑘 ∈ ℤ) ∧ (𝑀 · 𝑘) = 𝑁) → (𝑁 / 𝑀) ∈ ℤ) |
| 12 | 11 | rexlimdva2 3144 | . 2 ⊢ (𝜑 → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 → (𝑁 / 𝑀) ∈ ℤ)) |
| 13 | zdivgd.2 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℂ) | |
| 14 | 13, 3, 5 | divcan2d 12024 | . . 3 ⊢ (𝜑 → (𝑀 · (𝑁 / 𝑀)) = 𝑁) |
| 15 | oveq2 7418 | . . . . . 6 ⊢ (𝑘 = (𝑁 / 𝑀) → (𝑀 · 𝑘) = (𝑀 · (𝑁 / 𝑀))) | |
| 16 | 15 | eqeq1d 2738 | . . . . 5 ⊢ (𝑘 = (𝑁 / 𝑀) → ((𝑀 · 𝑘) = 𝑁 ↔ (𝑀 · (𝑁 / 𝑀)) = 𝑁)) |
| 17 | 16 | rspcev 3606 | . . . 4 ⊢ (((𝑁 / 𝑀) ∈ ℤ ∧ (𝑀 · (𝑁 / 𝑀)) = 𝑁) → ∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁) |
| 18 | 17 | ex 412 | . . 3 ⊢ ((𝑁 / 𝑀) ∈ ℤ → ((𝑀 · (𝑁 / 𝑀)) = 𝑁 → ∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁)) |
| 19 | 14, 18 | syl5com 31 | . 2 ⊢ (𝜑 → ((𝑁 / 𝑀) ∈ ℤ → ∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁)) |
| 20 | 12, 19 | impbid 212 | 1 ⊢ (𝜑 → (∃𝑘 ∈ ℤ (𝑀 · 𝑘) = 𝑁 ↔ (𝑁 / 𝑀) ∈ ℤ)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∃wrex 3061 (class class class)co 7410 ℂcc 11132 0cc0 11134 · cmul 11139 / cdiv 11899 ℤcz 12593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-z 12594 |
| This theorem is referenced by: ef11d 42357 |
| Copyright terms: Public domain | W3C validator |