Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > posqsqznn | Structured version Visualization version GIF version |
Description: When a positive rational squared is an integer, the rational is a positive integer. zsqrtelqelz 16390 with all terms squared and positive. (Contributed by SN, 23-Aug-2024.) |
Ref | Expression |
---|---|
posqsqznn.1 | ⊢ (𝜑 → (𝐴↑2) ∈ ℤ) |
posqsqznn.2 | ⊢ (𝜑 → 𝐴 ∈ ℚ) |
posqsqznn.3 | ⊢ (𝜑 → 0 < 𝐴) |
Ref | Expression |
---|---|
posqsqznn | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | posqsqznn.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℚ) | |
2 | 1 | qred 12624 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | 0red 10909 | . . . . 5 ⊢ (𝜑 → 0 ∈ ℝ) | |
4 | posqsqznn.3 | . . . . 5 ⊢ (𝜑 → 0 < 𝐴) | |
5 | 3, 2, 4 | ltled 11053 | . . . 4 ⊢ (𝜑 → 0 ≤ 𝐴) |
6 | 2, 5 | sqrtsqd 15059 | . . 3 ⊢ (𝜑 → (√‘(𝐴↑2)) = 𝐴) |
7 | posqsqznn.1 | . . . 4 ⊢ (𝜑 → (𝐴↑2) ∈ ℤ) | |
8 | 6, 1 | eqeltrd 2839 | . . . 4 ⊢ (𝜑 → (√‘(𝐴↑2)) ∈ ℚ) |
9 | zsqrtelqelz 16390 | . . . 4 ⊢ (((𝐴↑2) ∈ ℤ ∧ (√‘(𝐴↑2)) ∈ ℚ) → (√‘(𝐴↑2)) ∈ ℤ) | |
10 | 7, 8, 9 | syl2anc 583 | . . 3 ⊢ (𝜑 → (√‘(𝐴↑2)) ∈ ℤ) |
11 | 6, 10 | eqeltrrd 2840 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℤ) |
12 | elnnz 12259 | . 2 ⊢ (𝐴 ∈ ℕ ↔ (𝐴 ∈ ℤ ∧ 0 < 𝐴)) | |
13 | 11, 4, 12 | sylanbrc 582 | 1 ⊢ (𝜑 → 𝐴 ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 0cc0 10802 < clt 10940 ℕcn 11903 2c2 11958 ℤcz 12249 ℚcq 12617 ↑cexp 13710 √csqrt 14872 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-rp 12660 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-dvds 15892 df-gcd 16130 df-numer 16367 df-denom 16368 |
This theorem is referenced by: flt4lem5e 40409 flt4lem6 40411 |
Copyright terms: Public domain | W3C validator |