![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > posqsqznn | Structured version Visualization version GIF version |
Description: When a positive rational squared is an integer, the rational is a positive integer. zsqrtelqelz 16699 with all terms squared and positive. (Contributed by SN, 23-Aug-2024.) |
Ref | Expression |
---|---|
posqsqznn.1 | ⊢ (𝜑 → (𝐴↑2) ∈ ℤ) |
posqsqznn.2 | ⊢ (𝜑 → 𝐴 ∈ ℚ) |
posqsqznn.3 | ⊢ (𝜑 → 0 < 𝐴) |
Ref | Expression |
---|---|
posqsqznn | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | posqsqznn.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℚ) | |
2 | 1 | qred 12944 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | 0red 11222 | . . . . 5 ⊢ (𝜑 → 0 ∈ ℝ) | |
4 | posqsqznn.3 | . . . . 5 ⊢ (𝜑 → 0 < 𝐴) | |
5 | 3, 2, 4 | ltled 11367 | . . . 4 ⊢ (𝜑 → 0 ≤ 𝐴) |
6 | 2, 5 | sqrtsqd 15371 | . . 3 ⊢ (𝜑 → (√‘(𝐴↑2)) = 𝐴) |
7 | posqsqznn.1 | . . . 4 ⊢ (𝜑 → (𝐴↑2) ∈ ℤ) | |
8 | 6, 1 | eqeltrd 2832 | . . . 4 ⊢ (𝜑 → (√‘(𝐴↑2)) ∈ ℚ) |
9 | zsqrtelqelz 16699 | . . . 4 ⊢ (((𝐴↑2) ∈ ℤ ∧ (√‘(𝐴↑2)) ∈ ℚ) → (√‘(𝐴↑2)) ∈ ℤ) | |
10 | 7, 8, 9 | syl2anc 583 | . . 3 ⊢ (𝜑 → (√‘(𝐴↑2)) ∈ ℤ) |
11 | 6, 10 | eqeltrrd 2833 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℤ) |
12 | elnnz 12573 | . 2 ⊢ (𝐴 ∈ ℕ ↔ (𝐴 ∈ ℤ ∧ 0 < 𝐴)) | |
13 | 11, 4, 12 | sylanbrc 582 | 1 ⊢ (𝜑 → 𝐴 ∈ ℕ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 class class class wbr 5148 ‘cfv 6543 (class class class)co 7412 0cc0 11113 < clt 11253 ℕcn 12217 2c2 12272 ℤcz 12563 ℚcq 12937 ↑cexp 14032 √csqrt 15185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-pre-sup 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-sup 9440 df-inf 9441 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-n0 12478 df-z 12564 df-uz 12828 df-q 12938 df-rp 12980 df-fl 13762 df-mod 13840 df-seq 13972 df-exp 14033 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-dvds 16203 df-gcd 16441 df-numer 16676 df-denom 16677 |
This theorem is referenced by: flt4lem5e 41701 flt4lem6 41703 |
Copyright terms: Public domain | W3C validator |