Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > divcan2d | Structured version Visualization version GIF version |
Description: A cancellation law for division. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
div1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
divcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
divcld.3 | ⊢ (𝜑 → 𝐵 ≠ 0) |
Ref | Expression |
---|---|
divcan2d | ⊢ (𝜑 → (𝐵 · (𝐴 / 𝐵)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | div1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | divcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | divcld.3 | . 2 ⊢ (𝜑 → 𝐵 ≠ 0) | |
4 | divcan2 11641 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐵 · (𝐴 / 𝐵)) = 𝐴) | |
5 | 1, 2, 3, 4 | syl3anc 1370 | 1 ⊢ (𝜑 → (𝐵 · (𝐴 / 𝐵)) = 𝐴) |
Copyright terms: Public domain | W3C validator |