![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > serf | GIF version |
Description: An infinite series of complex terms is a function from ℕ to ℂ. (Contributed by NM, 18-Apr-2005.) (Revised by Mario Carneiro, 27-May-2014.) |
Ref | Expression |
---|---|
serf.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
serf.2 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
serf.3 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
Ref | Expression |
---|---|
serf | ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | serf.1 | . 2 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
2 | serf.2 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
3 | serf.3 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) | |
4 | addcl 7971 | . . 3 ⊢ ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 + 𝑥) ∈ ℂ) | |
5 | 4 | adantl 277 | . 2 ⊢ ((𝜑 ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 + 𝑥) ∈ ℂ) |
6 | 1, 2, 3, 5 | seqf 10500 | 1 ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶ℂ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2160 ⟶wf 5234 ‘cfv 5238 (class class class)co 5900 ℂcc 7844 + caddc 7849 ℤcz 9288 ℤ≥cuz 9563 seqcseq 10484 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4136 ax-sep 4139 ax-nul 4147 ax-pow 4195 ax-pr 4230 ax-un 4454 ax-setind 4557 ax-iinf 4608 ax-cnex 7937 ax-resscn 7938 ax-1cn 7939 ax-1re 7940 ax-icn 7941 ax-addcl 7942 ax-addrcl 7943 ax-mulcl 7944 ax-addcom 7946 ax-addass 7948 ax-distr 7950 ax-i2m1 7951 ax-0lt1 7952 ax-0id 7954 ax-rnegex 7955 ax-cnre 7957 ax-pre-ltirr 7958 ax-pre-ltwlin 7959 ax-pre-lttrn 7960 ax-pre-ltadd 7962 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3595 df-sn 3616 df-pr 3617 df-op 3619 df-uni 3828 df-int 3863 df-iun 3906 df-br 4022 df-opab 4083 df-mpt 4084 df-tr 4120 df-id 4314 df-iord 4387 df-on 4389 df-ilim 4390 df-suc 4392 df-iom 4611 df-xp 4653 df-rel 4654 df-cnv 4655 df-co 4656 df-dm 4657 df-rn 4658 df-res 4659 df-ima 4660 df-iota 5199 df-fun 5240 df-fn 5241 df-f 5242 df-f1 5243 df-fo 5244 df-f1o 5245 df-fv 5246 df-riota 5855 df-ov 5903 df-oprab 5904 df-mpo 5905 df-1st 6169 df-2nd 6170 df-recs 6334 df-frec 6420 df-pnf 8029 df-mnf 8030 df-xr 8031 df-ltxr 8032 df-le 8033 df-sub 8165 df-neg 8166 df-inn 8955 df-n0 9212 df-z 9289 df-uz 9564 df-seqfrec 10485 |
This theorem is referenced by: ser0f 10555 clim2ser 11386 clim2ser2 11387 isermulc2 11389 serf0 11401 fsum3cvg 11427 fsum3 11436 isumadd 11480 iserabs 11524 isumsplit 11540 cvgratnnlemseq 11575 cvgratnnlemrate 11579 cvgratnn 11580 mertenslem2 11585 mertensabs 11586 efcvgfsum 11716 efcj 11722 cvgcmp2n 15269 |
Copyright terms: Public domain | W3C validator |