![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > serf | GIF version |
Description: An infinite series of complex terms is a function from β to β. (Contributed by NM, 18-Apr-2005.) (Revised by Mario Carneiro, 27-May-2014.) |
Ref | Expression |
---|---|
serf.1 | β’ π = (β€β₯βπ) |
serf.2 | β’ (π β π β β€) |
serf.3 | β’ ((π β§ π β π) β (πΉβπ) β β) |
Ref | Expression |
---|---|
serf | β’ (π β seqπ( + , πΉ):πβΆβ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | serf.1 | . 2 β’ π = (β€β₯βπ) | |
2 | serf.2 | . 2 β’ (π β π β β€) | |
3 | serf.3 | . 2 β’ ((π β§ π β π) β (πΉβπ) β β) | |
4 | addcl 7938 | . . 3 β’ ((π β β β§ π₯ β β) β (π + π₯) β β) | |
5 | 4 | adantl 277 | . 2 β’ ((π β§ (π β β β§ π₯ β β)) β (π + π₯) β β) |
6 | 1, 2, 3, 5 | seqf 10463 | 1 β’ (π β seqπ( + , πΉ):πβΆβ) |
Colors of variables: wff set class |
Syntax hints: β wi 4 β§ wa 104 = wceq 1353 β wcel 2148 βΆwf 5214 βcfv 5218 (class class class)co 5877 βcc 7811 + caddc 7816 β€cz 9255 β€β₯cuz 9530 seqcseq 10447 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-ltadd 7929 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-frec 6394 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-inn 8922 df-n0 9179 df-z 9256 df-uz 9531 df-seqfrec 10448 |
This theorem is referenced by: ser0f 10517 clim2ser 11347 clim2ser2 11348 isermulc2 11350 serf0 11362 fsum3cvg 11388 fsum3 11397 isumadd 11441 iserabs 11485 isumsplit 11501 cvgratnnlemseq 11536 cvgratnnlemrate 11540 cvgratnn 11541 mertenslem2 11546 mertensabs 11547 efcvgfsum 11677 efcj 11683 cvgcmp2n 14820 |
Copyright terms: Public domain | W3C validator |