![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > absreimsq | GIF version |
Description: Square of the absolute value of a number that has been decomposed into real and imaginary parts. (Contributed by NM, 1-Feb-2007.) |
Ref | Expression |
---|---|
absreimsq | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘(𝐴 + (i · 𝐵)))↑2) = ((𝐴↑2) + (𝐵↑2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recn 7677 | . . . 4 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
2 | ax-icn 7640 | . . . . 5 ⊢ i ∈ ℂ | |
3 | recn 7677 | . . . . 5 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℂ) | |
4 | mulcl 7671 | . . . . 5 ⊢ ((i ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · 𝐵) ∈ ℂ) | |
5 | 2, 3, 4 | sylancr 408 | . . . 4 ⊢ (𝐵 ∈ ℝ → (i · 𝐵) ∈ ℂ) |
6 | addcl 7669 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (𝐴 + (i · 𝐵)) ∈ ℂ) | |
7 | 1, 5, 6 | syl2an 285 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + (i · 𝐵)) ∈ ℂ) |
8 | absvalsq2 10718 | . . 3 ⊢ ((𝐴 + (i · 𝐵)) ∈ ℂ → ((abs‘(𝐴 + (i · 𝐵)))↑2) = (((ℜ‘(𝐴 + (i · 𝐵)))↑2) + ((ℑ‘(𝐴 + (i · 𝐵)))↑2))) | |
9 | 7, 8 | syl 14 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘(𝐴 + (i · 𝐵)))↑2) = (((ℜ‘(𝐴 + (i · 𝐵)))↑2) + ((ℑ‘(𝐴 + (i · 𝐵)))↑2))) |
10 | crre 10522 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℜ‘(𝐴 + (i · 𝐵))) = 𝐴) | |
11 | 10 | oveq1d 5743 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((ℜ‘(𝐴 + (i · 𝐵)))↑2) = (𝐴↑2)) |
12 | crim 10523 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℑ‘(𝐴 + (i · 𝐵))) = 𝐵) | |
13 | 12 | oveq1d 5743 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((ℑ‘(𝐴 + (i · 𝐵)))↑2) = (𝐵↑2)) |
14 | 11, 13 | oveq12d 5746 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((ℜ‘(𝐴 + (i · 𝐵)))↑2) + ((ℑ‘(𝐴 + (i · 𝐵)))↑2)) = ((𝐴↑2) + (𝐵↑2))) |
15 | 9, 14 | eqtrd 2147 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((abs‘(𝐴 + (i · 𝐵)))↑2) = ((𝐴↑2) + (𝐵↑2))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1314 ∈ wcel 1463 ‘cfv 5081 (class class class)co 5728 ℂcc 7545 ℝcr 7546 ici 7549 + caddc 7550 · cmul 7552 2c2 8681 ↑cexp 10185 ℜcre 10505 ℑcim 10506 abscabs 10661 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-13 1474 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-coll 4003 ax-sep 4006 ax-nul 4014 ax-pow 4058 ax-pr 4091 ax-un 4315 ax-setind 4412 ax-iinf 4462 ax-cnex 7636 ax-resscn 7637 ax-1cn 7638 ax-1re 7639 ax-icn 7640 ax-addcl 7641 ax-addrcl 7642 ax-mulcl 7643 ax-mulrcl 7644 ax-addcom 7645 ax-mulcom 7646 ax-addass 7647 ax-mulass 7648 ax-distr 7649 ax-i2m1 7650 ax-0lt1 7651 ax-1rid 7652 ax-0id 7653 ax-rnegex 7654 ax-precex 7655 ax-cnre 7656 ax-pre-ltirr 7657 ax-pre-ltwlin 7658 ax-pre-lttrn 7659 ax-pre-apti 7660 ax-pre-ltadd 7661 ax-pre-mulgt0 7662 ax-pre-mulext 7663 ax-arch 7664 ax-caucvg 7665 |
This theorem depends on definitions: df-bi 116 df-dc 803 df-3or 946 df-3an 947 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ne 2283 df-nel 2378 df-ral 2395 df-rex 2396 df-reu 2397 df-rmo 2398 df-rab 2399 df-v 2659 df-sbc 2879 df-csb 2972 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-nul 3330 df-if 3441 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-int 3738 df-iun 3781 df-br 3896 df-opab 3950 df-mpt 3951 df-tr 3987 df-id 4175 df-po 4178 df-iso 4179 df-iord 4248 df-on 4250 df-ilim 4251 df-suc 4253 df-iom 4465 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-rn 4510 df-res 4511 df-ima 4512 df-iota 5046 df-fun 5083 df-fn 5084 df-f 5085 df-f1 5086 df-fo 5087 df-f1o 5088 df-fv 5089 df-riota 5684 df-ov 5731 df-oprab 5732 df-mpo 5733 df-1st 5992 df-2nd 5993 df-recs 6156 df-frec 6242 df-pnf 7726 df-mnf 7727 df-xr 7728 df-ltxr 7729 df-le 7730 df-sub 7858 df-neg 7859 df-reap 8255 df-ap 8262 df-div 8346 df-inn 8631 df-2 8689 df-3 8690 df-4 8691 df-n0 8882 df-z 8959 df-uz 9229 df-rp 9344 df-seqfrec 10112 df-exp 10186 df-cj 10507 df-re 10508 df-im 10509 df-rsqrt 10662 df-abs 10663 |
This theorem is referenced by: absreim 10732 |
Copyright terms: Public domain | W3C validator |