Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > modqsubmodmod | GIF version |
Description: The difference of a number modulo a modulus and another number modulo the same modulus equals the difference of the two numbers modulo the modulus. (Contributed by Jim Kingdon, 25-Oct-2021.) |
Ref | Expression |
---|---|
modqsubmodmod | ⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → (((𝐴 mod 𝑀) − (𝐵 mod 𝑀)) mod 𝑀) = ((𝐴 − 𝐵) mod 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 519 | . . 3 ⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → 𝐴 ∈ ℚ) | |
2 | simprl 521 | . . 3 ⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → 𝑀 ∈ ℚ) | |
3 | simprr 522 | . . 3 ⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → 0 < 𝑀) | |
4 | 1, 2, 3 | modqcld 10236 | . 2 ⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → (𝐴 mod 𝑀) ∈ ℚ) |
5 | simplr 520 | . . 3 ⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → 𝐵 ∈ ℚ) | |
6 | 5, 2, 3 | modqcld 10236 | . 2 ⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → (𝐵 mod 𝑀) ∈ ℚ) |
7 | modqabs2 10266 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐴 mod 𝑀) mod 𝑀) = (𝐴 mod 𝑀)) | |
8 | 1, 2, 3, 7 | syl3anc 1220 | . 2 ⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((𝐴 mod 𝑀) mod 𝑀) = (𝐴 mod 𝑀)) |
9 | modqabs2 10266 | . . 3 ⊢ ((𝐵 ∈ ℚ ∧ 𝑀 ∈ ℚ ∧ 0 < 𝑀) → ((𝐵 mod 𝑀) mod 𝑀) = (𝐵 mod 𝑀)) | |
10 | 5, 2, 3, 9 | syl3anc 1220 | . 2 ⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → ((𝐵 mod 𝑀) mod 𝑀) = (𝐵 mod 𝑀)) |
11 | 4, 1, 6, 5, 2, 3, 8, 10 | modqsub12d 10289 | 1 ⊢ (((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ) ∧ (𝑀 ∈ ℚ ∧ 0 < 𝑀)) → (((𝐴 mod 𝑀) − (𝐵 mod 𝑀)) mod 𝑀) = ((𝐴 − 𝐵) mod 𝑀)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1335 ∈ wcel 2128 class class class wbr 3967 (class class class)co 5826 0cc0 7734 < clt 7914 − cmin 8050 ℚcq 9534 mod cmo 10230 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4084 ax-pow 4137 ax-pr 4171 ax-un 4395 ax-setind 4498 ax-cnex 7825 ax-resscn 7826 ax-1cn 7827 ax-1re 7828 ax-icn 7829 ax-addcl 7830 ax-addrcl 7831 ax-mulcl 7832 ax-mulrcl 7833 ax-addcom 7834 ax-mulcom 7835 ax-addass 7836 ax-mulass 7837 ax-distr 7838 ax-i2m1 7839 ax-0lt1 7840 ax-1rid 7841 ax-0id 7842 ax-rnegex 7843 ax-precex 7844 ax-cnre 7845 ax-pre-ltirr 7846 ax-pre-ltwlin 7847 ax-pre-lttrn 7848 ax-pre-apti 7849 ax-pre-ltadd 7850 ax-pre-mulgt0 7851 ax-pre-mulext 7852 ax-arch 7853 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3546 df-sn 3567 df-pr 3568 df-op 3570 df-uni 3775 df-int 3810 df-iun 3853 df-br 3968 df-opab 4028 df-mpt 4029 df-id 4255 df-po 4258 df-iso 4259 df-xp 4594 df-rel 4595 df-cnv 4596 df-co 4597 df-dm 4598 df-rn 4599 df-res 4600 df-ima 4601 df-iota 5137 df-fun 5174 df-fn 5175 df-f 5176 df-fv 5180 df-riota 5782 df-ov 5829 df-oprab 5830 df-mpo 5831 df-1st 6090 df-2nd 6091 df-pnf 7916 df-mnf 7917 df-xr 7918 df-ltxr 7919 df-le 7920 df-sub 8052 df-neg 8053 df-reap 8454 df-ap 8461 df-div 8550 df-inn 8839 df-n0 9096 df-z 9173 df-q 9535 df-rp 9567 df-fl 10178 df-mod 10231 |
This theorem is referenced by: addmodlteq 10306 modprm0 12144 |
Copyright terms: Public domain | W3C validator |