| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > modqsub12d | GIF version | ||
| Description: Subtraction property of the modulo operation. (Contributed by Jim Kingdon, 25-Oct-2021.) |
| Ref | Expression |
|---|---|
| modqadd12d.1 | ⊢ (𝜑 → 𝐴 ∈ ℚ) |
| modqadd12d.2 | ⊢ (𝜑 → 𝐵 ∈ ℚ) |
| modqadd12d.3 | ⊢ (𝜑 → 𝐶 ∈ ℚ) |
| modqadd12d.4 | ⊢ (𝜑 → 𝐷 ∈ ℚ) |
| modqadd12d.5 | ⊢ (𝜑 → 𝐸 ∈ ℚ) |
| modqadd12d.egt0 | ⊢ (𝜑 → 0 < 𝐸) |
| modqadd12d.6 | ⊢ (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸)) |
| modqadd12d.7 | ⊢ (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸)) |
| Ref | Expression |
|---|---|
| modqsub12d | ⊢ (𝜑 → ((𝐴 − 𝐶) mod 𝐸) = ((𝐵 − 𝐷) mod 𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modqadd12d.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℚ) | |
| 2 | modqadd12d.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℚ) | |
| 3 | modqadd12d.3 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℚ) | |
| 4 | qnegcl 9713 | . . . 4 ⊢ (𝐶 ∈ ℚ → -𝐶 ∈ ℚ) | |
| 5 | 3, 4 | syl 14 | . . 3 ⊢ (𝜑 → -𝐶 ∈ ℚ) |
| 6 | modqadd12d.4 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℚ) | |
| 7 | qnegcl 9713 | . . . 4 ⊢ (𝐷 ∈ ℚ → -𝐷 ∈ ℚ) | |
| 8 | 6, 7 | syl 14 | . . 3 ⊢ (𝜑 → -𝐷 ∈ ℚ) |
| 9 | modqadd12d.5 | . . 3 ⊢ (𝜑 → 𝐸 ∈ ℚ) | |
| 10 | modqadd12d.egt0 | . . 3 ⊢ (𝜑 → 0 < 𝐸) | |
| 11 | modqadd12d.6 | . . 3 ⊢ (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸)) | |
| 12 | modqadd12d.7 | . . . 4 ⊢ (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸)) | |
| 13 | 3, 6, 9, 10, 12 | modqnegd 10474 | . . 3 ⊢ (𝜑 → (-𝐶 mod 𝐸) = (-𝐷 mod 𝐸)) |
| 14 | 1, 2, 5, 8, 9, 10, 11, 13 | modqadd12d 10475 | . 2 ⊢ (𝜑 → ((𝐴 + -𝐶) mod 𝐸) = ((𝐵 + -𝐷) mod 𝐸)) |
| 15 | qcn 9711 | . . . . 5 ⊢ (𝐴 ∈ ℚ → 𝐴 ∈ ℂ) | |
| 16 | 1, 15 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 17 | qcn 9711 | . . . . 5 ⊢ (𝐶 ∈ ℚ → 𝐶 ∈ ℂ) | |
| 18 | 3, 17 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 19 | 16, 18 | negsubd 8346 | . . 3 ⊢ (𝜑 → (𝐴 + -𝐶) = (𝐴 − 𝐶)) |
| 20 | 19 | oveq1d 5938 | . 2 ⊢ (𝜑 → ((𝐴 + -𝐶) mod 𝐸) = ((𝐴 − 𝐶) mod 𝐸)) |
| 21 | qcn 9711 | . . . . 5 ⊢ (𝐵 ∈ ℚ → 𝐵 ∈ ℂ) | |
| 22 | 2, 21 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 23 | qcn 9711 | . . . . 5 ⊢ (𝐷 ∈ ℚ → 𝐷 ∈ ℂ) | |
| 24 | 6, 23 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| 25 | 22, 24 | negsubd 8346 | . . 3 ⊢ (𝜑 → (𝐵 + -𝐷) = (𝐵 − 𝐷)) |
| 26 | 25 | oveq1d 5938 | . 2 ⊢ (𝜑 → ((𝐵 + -𝐷) mod 𝐸) = ((𝐵 − 𝐷) mod 𝐸)) |
| 27 | 14, 20, 26 | 3eqtr3d 2237 | 1 ⊢ (𝜑 → ((𝐴 − 𝐶) mod 𝐸) = ((𝐵 − 𝐷) mod 𝐸)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 class class class wbr 4034 (class class class)co 5923 ℂcc 7880 0cc0 7882 + caddc 7885 < clt 8064 − cmin 8200 -cneg 8201 ℚcq 9696 mod cmo 10417 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7973 ax-resscn 7974 ax-1cn 7975 ax-1re 7976 ax-icn 7977 ax-addcl 7978 ax-addrcl 7979 ax-mulcl 7980 ax-mulrcl 7981 ax-addcom 7982 ax-mulcom 7983 ax-addass 7984 ax-mulass 7985 ax-distr 7986 ax-i2m1 7987 ax-0lt1 7988 ax-1rid 7989 ax-0id 7990 ax-rnegex 7991 ax-precex 7992 ax-cnre 7993 ax-pre-ltirr 7994 ax-pre-ltwlin 7995 ax-pre-lttrn 7996 ax-pre-apti 7997 ax-pre-ltadd 7998 ax-pre-mulgt0 7999 ax-pre-mulext 8000 ax-arch 8001 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-1st 6200 df-2nd 6201 df-pnf 8066 df-mnf 8067 df-xr 8068 df-ltxr 8069 df-le 8070 df-sub 8202 df-neg 8203 df-reap 8605 df-ap 8612 df-div 8703 df-inn 8994 df-n0 9253 df-z 9330 df-q 9697 df-rp 9732 df-fl 10363 df-mod 10418 |
| This theorem is referenced by: modqsubmod 10477 modqsubmodmod 10478 |
| Copyright terms: Public domain | W3C validator |