ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  modqsub12d GIF version

Theorem modqsub12d 9937
Description: Subtraction property of the modulo operation. (Contributed by Jim Kingdon, 25-Oct-2021.)
Hypotheses
Ref Expression
modqadd12d.1 (𝜑𝐴 ∈ ℚ)
modqadd12d.2 (𝜑𝐵 ∈ ℚ)
modqadd12d.3 (𝜑𝐶 ∈ ℚ)
modqadd12d.4 (𝜑𝐷 ∈ ℚ)
modqadd12d.5 (𝜑𝐸 ∈ ℚ)
modqadd12d.egt0 (𝜑 → 0 < 𝐸)
modqadd12d.6 (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸))
modqadd12d.7 (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸))
Assertion
Ref Expression
modqsub12d (𝜑 → ((𝐴𝐶) mod 𝐸) = ((𝐵𝐷) mod 𝐸))

Proof of Theorem modqsub12d
StepHypRef Expression
1 modqadd12d.1 . . 3 (𝜑𝐴 ∈ ℚ)
2 modqadd12d.2 . . 3 (𝜑𝐵 ∈ ℚ)
3 modqadd12d.3 . . . 4 (𝜑𝐶 ∈ ℚ)
4 qnegcl 9220 . . . 4 (𝐶 ∈ ℚ → -𝐶 ∈ ℚ)
53, 4syl 14 . . 3 (𝜑 → -𝐶 ∈ ℚ)
6 modqadd12d.4 . . . 4 (𝜑𝐷 ∈ ℚ)
7 qnegcl 9220 . . . 4 (𝐷 ∈ ℚ → -𝐷 ∈ ℚ)
86, 7syl 14 . . 3 (𝜑 → -𝐷 ∈ ℚ)
9 modqadd12d.5 . . 3 (𝜑𝐸 ∈ ℚ)
10 modqadd12d.egt0 . . 3 (𝜑 → 0 < 𝐸)
11 modqadd12d.6 . . 3 (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸))
12 modqadd12d.7 . . . 4 (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸))
133, 6, 9, 10, 12modqnegd 9935 . . 3 (𝜑 → (-𝐶 mod 𝐸) = (-𝐷 mod 𝐸))
141, 2, 5, 8, 9, 10, 11, 13modqadd12d 9936 . 2 (𝜑 → ((𝐴 + -𝐶) mod 𝐸) = ((𝐵 + -𝐷) mod 𝐸))
15 qcn 9218 . . . . 5 (𝐴 ∈ ℚ → 𝐴 ∈ ℂ)
161, 15syl 14 . . . 4 (𝜑𝐴 ∈ ℂ)
17 qcn 9218 . . . . 5 (𝐶 ∈ ℚ → 𝐶 ∈ ℂ)
183, 17syl 14 . . . 4 (𝜑𝐶 ∈ ℂ)
1916, 18negsubd 7896 . . 3 (𝜑 → (𝐴 + -𝐶) = (𝐴𝐶))
2019oveq1d 5705 . 2 (𝜑 → ((𝐴 + -𝐶) mod 𝐸) = ((𝐴𝐶) mod 𝐸))
21 qcn 9218 . . . . 5 (𝐵 ∈ ℚ → 𝐵 ∈ ℂ)
222, 21syl 14 . . . 4 (𝜑𝐵 ∈ ℂ)
23 qcn 9218 . . . . 5 (𝐷 ∈ ℚ → 𝐷 ∈ ℂ)
246, 23syl 14 . . . 4 (𝜑𝐷 ∈ ℂ)
2522, 24negsubd 7896 . . 3 (𝜑 → (𝐵 + -𝐷) = (𝐵𝐷))
2625oveq1d 5705 . 2 (𝜑 → ((𝐵 + -𝐷) mod 𝐸) = ((𝐵𝐷) mod 𝐸))
2714, 20, 263eqtr3d 2135 1 (𝜑 → ((𝐴𝐶) mod 𝐸) = ((𝐵𝐷) mod 𝐸))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1296  wcel 1445   class class class wbr 3867  (class class class)co 5690  cc 7445  0cc0 7447   + caddc 7450   < clt 7619  cmin 7750  -cneg 7751  cq 9203   mod cmo 9878
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-mulrcl 7541  ax-addcom 7542  ax-mulcom 7543  ax-addass 7544  ax-mulass 7545  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-1rid 7549  ax-0id 7550  ax-rnegex 7551  ax-precex 7552  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-apti 7557  ax-pre-ltadd 7558  ax-pre-mulgt0 7559  ax-pre-mulext 7560  ax-arch 7561
This theorem depends on definitions:  df-bi 116  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rmo 2378  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-id 4144  df-po 4147  df-iso 4148  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-reap 8149  df-ap 8156  df-div 8237  df-inn 8521  df-n0 8772  df-z 8849  df-q 9204  df-rp 9234  df-fl 9826  df-mod 9879
This theorem is referenced by:  modqsubmod  9938  modqsubmodmod  9939
  Copyright terms: Public domain W3C validator