| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > modqcld | GIF version | ||
| Description: Closure law for the modulo operation. (Contributed by Jim Kingdon, 16-Oct-2021.) |
| Ref | Expression |
|---|---|
| modqcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℚ) |
| modqcld.2 | ⊢ (𝜑 → 𝐵 ∈ ℚ) |
| modqcld.3 | ⊢ (𝜑 → 0 < 𝐵) |
| Ref | Expression |
|---|---|
| modqcld | ⊢ (𝜑 → (𝐴 mod 𝐵) ∈ ℚ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | modqcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℚ) | |
| 2 | modqcld.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℚ) | |
| 3 | modqcld.3 | . 2 ⊢ (𝜑 → 0 < 𝐵) | |
| 4 | modqcl 10435 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 0 < 𝐵) → (𝐴 mod 𝐵) ∈ ℚ) | |
| 5 | 1, 2, 3, 4 | syl3anc 1249 | 1 ⊢ (𝜑 → (𝐴 mod 𝐵) ∈ ℚ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 class class class wbr 4034 (class class class)co 5925 0cc0 7896 < clt 8078 ℚcq 9710 mod cmo 10431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 ax-arch 8015 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-n0 9267 df-z 9344 df-q 9711 df-rp 9746 df-fl 10377 df-mod 10432 |
| This theorem is referenced by: modqabs 10466 modqaddabs 10471 modqaddmod 10472 modqmuladdim 10476 modqmuladdnn0 10477 modqadd2mod 10483 modqltm1p1mod 10485 modqsubmod 10491 modqsubmodmod 10492 modqmulmod 10498 modqmulmodr 10499 modqaddmulmod 10500 modqsubdir 10502 addmodlteq 10507 divalgmod 12109 bitsmod 12138 bitsinv1lem 12143 bezoutlemnewy 12188 crth 12417 phimullem 12418 4sqlem5 12576 4sqlem6 12577 4sqlem10 12581 |
| Copyright terms: Public domain | W3C validator |