| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mulgnn | GIF version | ||
| Description: Group multiple (exponentiation) operation at a positive integer. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| Ref | Expression |
|---|---|
| mulgnn.b | ⊢ 𝐵 = (Base‘𝐺) |
| mulgnn.p | ⊢ + = (+g‘𝐺) |
| mulgnn.t | ⊢ · = (.g‘𝐺) |
| mulgnn.s | ⊢ 𝑆 = seq1( + , (ℕ × {𝑋})) |
| Ref | Expression |
|---|---|
| mulgnn | ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (𝑆‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnz 9373 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
| 2 | mulgnn.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | mulgnn.p | . . . 4 ⊢ + = (+g‘𝐺) | |
| 4 | eqid 2204 | . . . 4 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 5 | eqid 2204 | . . . 4 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 6 | mulgnn.t | . . . 4 ⊢ · = (.g‘𝐺) | |
| 7 | mulgnn.s | . . . 4 ⊢ 𝑆 = seq1( + , (ℕ × {𝑋})) | |
| 8 | 2, 3, 4, 5, 6, 7 | mulgval 13376 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = if(𝑁 = 0, (0g‘𝐺), if(0 < 𝑁, (𝑆‘𝑁), ((invg‘𝐺)‘(𝑆‘-𝑁))))) |
| 9 | 1, 8 | sylan 283 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = if(𝑁 = 0, (0g‘𝐺), if(0 < 𝑁, (𝑆‘𝑁), ((invg‘𝐺)‘(𝑆‘-𝑁))))) |
| 10 | nnne0 9046 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ≠ 0) | |
| 11 | 10 | neneqd 2396 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ¬ 𝑁 = 0) |
| 12 | 11 | iffalsed 3580 | . . . 4 ⊢ (𝑁 ∈ ℕ → if(𝑁 = 0, (0g‘𝐺), if(0 < 𝑁, (𝑆‘𝑁), ((invg‘𝐺)‘(𝑆‘-𝑁)))) = if(0 < 𝑁, (𝑆‘𝑁), ((invg‘𝐺)‘(𝑆‘-𝑁)))) |
| 13 | nngt0 9043 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
| 14 | 13 | iftrued 3577 | . . . 4 ⊢ (𝑁 ∈ ℕ → if(0 < 𝑁, (𝑆‘𝑁), ((invg‘𝐺)‘(𝑆‘-𝑁))) = (𝑆‘𝑁)) |
| 15 | 12, 14 | eqtrd 2237 | . . 3 ⊢ (𝑁 ∈ ℕ → if(𝑁 = 0, (0g‘𝐺), if(0 < 𝑁, (𝑆‘𝑁), ((invg‘𝐺)‘(𝑆‘-𝑁)))) = (𝑆‘𝑁)) |
| 16 | 15 | adantr 276 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → if(𝑁 = 0, (0g‘𝐺), if(0 < 𝑁, (𝑆‘𝑁), ((invg‘𝐺)‘(𝑆‘-𝑁)))) = (𝑆‘𝑁)) |
| 17 | 9, 16 | eqtrd 2237 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (𝑆‘𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∈ wcel 2175 ifcif 3570 {csn 3632 class class class wbr 4043 × cxp 4671 ‘cfv 5268 (class class class)co 5934 0cc0 7907 1c1 7908 < clt 8089 -cneg 8226 ℕcn 9018 ℤcz 9354 seqcseq 10573 Basecbs 12751 +gcplusg 12828 0gc0g 13006 invgcminusg 13251 .gcmg 13373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-iinf 4634 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-addcom 8007 ax-addass 8009 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-0id 8015 ax-rnegex 8016 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-ltadd 8023 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4338 df-iord 4411 df-on 4413 df-ilim 4414 df-suc 4416 df-iom 4637 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-recs 6381 df-frec 6467 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-inn 9019 df-2 9077 df-n0 9278 df-z 9355 df-uz 9631 df-seqfrec 10574 df-ndx 12754 df-slot 12755 df-base 12757 df-plusg 12841 df-0g 13008 df-minusg 13254 df-mulg 13374 |
| This theorem is referenced by: mulgnngsum 13381 mulg1 13383 mulgnnp1 13384 mulgnegnn 13386 mulgnnsubcl 13388 mulgnn0z 13403 mulgnndir 13405 submmulg 13420 subgmulg 13442 |
| Copyright terms: Public domain | W3C validator |