ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divcanap2d GIF version

Theorem divcanap2d 8947
Description: A cancellation law for division. (Contributed by Jim Kingdon, 29-Feb-2020.)
Hypotheses
Ref Expression
divcld.1 (𝜑𝐴 ∈ ℂ)
divcld.2 (𝜑𝐵 ∈ ℂ)
divclapd.3 (𝜑𝐵 # 0)
Assertion
Ref Expression
divcanap2d (𝜑 → (𝐵 · (𝐴 / 𝐵)) = 𝐴)

Proof of Theorem divcanap2d
StepHypRef Expression
1 divcld.1 . 2 (𝜑𝐴 ∈ ℂ)
2 divcld.2 . 2 (𝜑𝐵 ∈ ℂ)
3 divclapd.3 . 2 (𝜑𝐵 # 0)
4 divcanap2 8835 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐵 · (𝐴 / 𝐵)) = 𝐴)
51, 2, 3, 4syl3anc 1271 1 (𝜑 → (𝐵 · (𝐴 / 𝐵)) = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200   class class class wbr 4083  (class class class)co 6007  cc 8005  0cc0 8007   · cmul 8012   # cap 8736   / cdiv 8827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828
This theorem is referenced by:  nneo  9558  zeo2  9561  intfracq  10550  modqlt  10563  resqrexlemover  11529  resqrexlemcalc1  11533  cvgratz  12051  mertenslemi1  12054  efgt0  12203  tanaddap  12258  divconjdvds  12368  bitsmod  12475  mulgcd  12545  qredeq  12626  qredeu  12627  prmind2  12650  oddpwdclemodd  12702  oddpwdclemdc  12703  pythagtriplem16  12810  pythagtriplem19  12813  pcprendvds2  12822  pcpremul  12824  pcadd  12871  4sqlem19  12940  znrrg  14632  dvrecap  15395  dveflem  15408  tangtx  15520  mersenne  15679  perfectlem2  15682  perfect  15683  lgseisenlem1  15757  lgseisenlem3  15759  lgsquadlem1  15764  lgsquad2lem1  15768  m1lgs  15772  2sqlem8  15810
  Copyright terms: Public domain W3C validator