ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sswrd GIF version

Theorem sswrd 10923
Description: The set of words respects ordering on the base set. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 13-May-2020.)
Assertion
Ref Expression
sswrd (𝑆𝑇 → Word 𝑆 ⊆ Word 𝑇)

Proof of Theorem sswrd
Dummy variables 𝑤 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iswrd 10916 . . . . . 6 (𝑤 ∈ Word 𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆)
21biimpi 120 . . . . 5 (𝑤 ∈ Word 𝑆 → ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆)
32adantl 277 . . . 4 ((𝑆𝑇𝑤 ∈ Word 𝑆) → ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆)
4 simprr 531 . . . . . 6 (((𝑆𝑇𝑤 ∈ Word 𝑆) ∧ (𝑙 ∈ ℕ0𝑤:(0..^𝑙)⟶𝑆)) → 𝑤:(0..^𝑙)⟶𝑆)
5 simpll 527 . . . . . 6 (((𝑆𝑇𝑤 ∈ Word 𝑆) ∧ (𝑙 ∈ ℕ0𝑤:(0..^𝑙)⟶𝑆)) → 𝑆𝑇)
64, 5fssd 5416 . . . . 5 (((𝑆𝑇𝑤 ∈ Word 𝑆) ∧ (𝑙 ∈ ℕ0𝑤:(0..^𝑙)⟶𝑆)) → 𝑤:(0..^𝑙)⟶𝑇)
7 simprl 529 . . . . 5 (((𝑆𝑇𝑤 ∈ Word 𝑆) ∧ (𝑙 ∈ ℕ0𝑤:(0..^𝑙)⟶𝑆)) → 𝑙 ∈ ℕ0)
8 iswrdinn0 10919 . . . . 5 ((𝑤:(0..^𝑙)⟶𝑇𝑙 ∈ ℕ0) → 𝑤 ∈ Word 𝑇)
96, 7, 8syl2anc 411 . . . 4 (((𝑆𝑇𝑤 ∈ Word 𝑆) ∧ (𝑙 ∈ ℕ0𝑤:(0..^𝑙)⟶𝑆)) → 𝑤 ∈ Word 𝑇)
103, 9rexlimddv 2616 . . 3 ((𝑆𝑇𝑤 ∈ Word 𝑆) → 𝑤 ∈ Word 𝑇)
1110ex 115 . 2 (𝑆𝑇 → (𝑤 ∈ Word 𝑆𝑤 ∈ Word 𝑇))
1211ssrdv 3185 1 (𝑆𝑇 → Word 𝑆 ⊆ Word 𝑇)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2164  wrex 2473  wss 3153  wf 5250  (class class class)co 5918  0cc0 7872  0cn0 9240  ..^cfzo 10208  Word cword 10914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-1o 6469  df-er 6587  df-en 6795  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075  df-fzo 10209  df-word 10915
This theorem is referenced by:  wrdv  10930  wrdeq  10936
  Copyright terms: Public domain W3C validator