| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sswrd | GIF version | ||
| Description: The set of words respects ordering on the base set. (Contributed by Stefan O'Rear, 15-Aug-2015.) (Revised by Mario Carneiro, 26-Feb-2016.) (Proof shortened by AV, 13-May-2020.) |
| Ref | Expression |
|---|---|
| sswrd | ⊢ (𝑆 ⊆ 𝑇 → Word 𝑆 ⊆ Word 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iswrd 11081 | . . . . . 6 ⊢ (𝑤 ∈ Word 𝑆 ↔ ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆) | |
| 2 | 1 | biimpi 120 | . . . . 5 ⊢ (𝑤 ∈ Word 𝑆 → ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆) |
| 3 | 2 | adantl 277 | . . . 4 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑤 ∈ Word 𝑆) → ∃𝑙 ∈ ℕ0 𝑤:(0..^𝑙)⟶𝑆) |
| 4 | simprr 531 | . . . . . 6 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑤 ∈ Word 𝑆) ∧ (𝑙 ∈ ℕ0 ∧ 𝑤:(0..^𝑙)⟶𝑆)) → 𝑤:(0..^𝑙)⟶𝑆) | |
| 5 | simpll 527 | . . . . . 6 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑤 ∈ Word 𝑆) ∧ (𝑙 ∈ ℕ0 ∧ 𝑤:(0..^𝑙)⟶𝑆)) → 𝑆 ⊆ 𝑇) | |
| 6 | 4, 5 | fssd 5486 | . . . . 5 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑤 ∈ Word 𝑆) ∧ (𝑙 ∈ ℕ0 ∧ 𝑤:(0..^𝑙)⟶𝑆)) → 𝑤:(0..^𝑙)⟶𝑇) |
| 7 | simprl 529 | . . . . 5 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑤 ∈ Word 𝑆) ∧ (𝑙 ∈ ℕ0 ∧ 𝑤:(0..^𝑙)⟶𝑆)) → 𝑙 ∈ ℕ0) | |
| 8 | iswrdinn0 11084 | . . . . 5 ⊢ ((𝑤:(0..^𝑙)⟶𝑇 ∧ 𝑙 ∈ ℕ0) → 𝑤 ∈ Word 𝑇) | |
| 9 | 6, 7, 8 | syl2anc 411 | . . . 4 ⊢ (((𝑆 ⊆ 𝑇 ∧ 𝑤 ∈ Word 𝑆) ∧ (𝑙 ∈ ℕ0 ∧ 𝑤:(0..^𝑙)⟶𝑆)) → 𝑤 ∈ Word 𝑇) |
| 10 | 3, 9 | rexlimddv 2653 | . . 3 ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑤 ∈ Word 𝑆) → 𝑤 ∈ Word 𝑇) |
| 11 | 10 | ex 115 | . 2 ⊢ (𝑆 ⊆ 𝑇 → (𝑤 ∈ Word 𝑆 → 𝑤 ∈ Word 𝑇)) |
| 12 | 11 | ssrdv 3230 | 1 ⊢ (𝑆 ⊆ 𝑇 → Word 𝑆 ⊆ Word 𝑇) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 ∃wrex 2509 ⊆ wss 3197 ⟶wf 5314 (class class class)co 6007 0cc0 8007 ℕ0cn0 9377 ..^cfzo 10346 Word cword 11079 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-frec 6543 df-1o 6568 df-er 6688 df-en 6896 df-fin 6898 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-inn 9119 df-n0 9378 df-z 9455 df-uz 9731 df-fz 10213 df-fzo 10347 df-word 11080 |
| This theorem is referenced by: wrdv 11095 wrdeq 11101 ccatclab 11137 |
| Copyright terms: Public domain | W3C validator |