| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > umgrnloop0 | GIF version | ||
| Description: A multigraph has no loops. (Contributed by Alexander van der Vekens, 6-Dec-2017.) (Revised by AV, 11-Dec-2020.) |
| Ref | Expression |
|---|---|
| umgrnloopv.e | ⊢ 𝐸 = (iEdg‘𝐺) |
| Ref | Expression |
|---|---|
| umgrnloop0 | ⊢ (𝐺 ∈ UMGraph → {𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) = {𝑈}} = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neirr 2387 | . . . . 5 ⊢ ¬ 𝑈 ≠ 𝑈 | |
| 2 | umgrnloopv.e | . . . . . 6 ⊢ 𝐸 = (iEdg‘𝐺) | |
| 3 | 2 | umgrnloop 15873 | . . . . 5 ⊢ (𝐺 ∈ UMGraph → (∃𝑥 ∈ dom 𝐸(𝐸‘𝑥) = {𝑈, 𝑈} → 𝑈 ≠ 𝑈)) |
| 4 | 1, 3 | mtoi 666 | . . . 4 ⊢ (𝐺 ∈ UMGraph → ¬ ∃𝑥 ∈ dom 𝐸(𝐸‘𝑥) = {𝑈, 𝑈}) |
| 5 | simpr 110 | . . . . . . 7 ⊢ ((𝐺 ∈ UMGraph ∧ (𝐸‘𝑥) = {𝑈}) → (𝐸‘𝑥) = {𝑈}) | |
| 6 | dfsn2 3658 | . . . . . . 7 ⊢ {𝑈} = {𝑈, 𝑈} | |
| 7 | 5, 6 | eqtrdi 2256 | . . . . . 6 ⊢ ((𝐺 ∈ UMGraph ∧ (𝐸‘𝑥) = {𝑈}) → (𝐸‘𝑥) = {𝑈, 𝑈}) |
| 8 | 7 | ex 115 | . . . . 5 ⊢ (𝐺 ∈ UMGraph → ((𝐸‘𝑥) = {𝑈} → (𝐸‘𝑥) = {𝑈, 𝑈})) |
| 9 | 8 | reximdv 2609 | . . . 4 ⊢ (𝐺 ∈ UMGraph → (∃𝑥 ∈ dom 𝐸(𝐸‘𝑥) = {𝑈} → ∃𝑥 ∈ dom 𝐸(𝐸‘𝑥) = {𝑈, 𝑈})) |
| 10 | 4, 9 | mtod 665 | . . 3 ⊢ (𝐺 ∈ UMGraph → ¬ ∃𝑥 ∈ dom 𝐸(𝐸‘𝑥) = {𝑈}) |
| 11 | ralnex 2496 | . . 3 ⊢ (∀𝑥 ∈ dom 𝐸 ¬ (𝐸‘𝑥) = {𝑈} ↔ ¬ ∃𝑥 ∈ dom 𝐸(𝐸‘𝑥) = {𝑈}) | |
| 12 | 10, 11 | sylibr 134 | . 2 ⊢ (𝐺 ∈ UMGraph → ∀𝑥 ∈ dom 𝐸 ¬ (𝐸‘𝑥) = {𝑈}) |
| 13 | rabeq0 3499 | . 2 ⊢ ({𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) = {𝑈}} = ∅ ↔ ∀𝑥 ∈ dom 𝐸 ¬ (𝐸‘𝑥) = {𝑈}) | |
| 14 | 12, 13 | sylibr 134 | 1 ⊢ (𝐺 ∈ UMGraph → {𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) = {𝑈}} = ∅) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2178 ≠ wne 2378 ∀wral 2486 ∃wrex 2487 {crab 2490 ∅c0 3469 {csn 3644 {cpr 3645 dom cdm 4694 ‘cfv 5291 iEdgciedg 15773 UMGraphcumgr 15849 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4179 ax-nul 4187 ax-pow 4235 ax-pr 4270 ax-un 4499 ax-setind 4604 ax-iinf 4655 ax-cnex 8053 ax-resscn 8054 ax-1cn 8055 ax-1re 8056 ax-icn 8057 ax-addcl 8058 ax-addrcl 8059 ax-mulcl 8060 ax-addcom 8062 ax-mulcom 8063 ax-addass 8064 ax-mulass 8065 ax-distr 8066 ax-i2m1 8067 ax-1rid 8069 ax-0id 8070 ax-rnegex 8071 ax-cnre 8073 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2779 df-sbc 3007 df-csb 3103 df-dif 3177 df-un 3179 df-in 3181 df-ss 3188 df-nul 3470 df-if 3581 df-pw 3629 df-sn 3650 df-pr 3651 df-op 3653 df-uni 3866 df-int 3901 df-br 4061 df-opab 4123 df-mpt 4124 df-tr 4160 df-id 4359 df-iord 4432 df-on 4434 df-suc 4437 df-iom 4658 df-xp 4700 df-rel 4701 df-cnv 4702 df-co 4703 df-dm 4704 df-rn 4705 df-res 4706 df-ima 4707 df-iota 5252 df-fun 5293 df-fn 5294 df-f 5295 df-f1 5296 df-fo 5297 df-f1o 5298 df-fv 5299 df-riota 5924 df-ov 5972 df-oprab 5973 df-mpo 5974 df-1st 6251 df-2nd 6252 df-1o 6527 df-2o 6528 df-er 6645 df-en 6853 df-sub 8282 df-inn 9074 df-2 9132 df-3 9133 df-4 9134 df-5 9135 df-6 9136 df-7 9137 df-8 9138 df-9 9139 df-n0 9333 df-dec 9542 df-ndx 12996 df-slot 12997 df-base 12999 df-edgf 15765 df-vtx 15774 df-iedg 15775 df-uhgrm 15826 df-upgren 15850 df-umgren 15851 |
| This theorem is referenced by: usgrnloop0 15958 |
| Copyright terms: Public domain | W3C validator |