MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1e2m1 Structured version   Visualization version   GIF version

Theorem 1e2m1 11336
Description: 1 = 2 - 1. (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
1e2m1 1 = (2 − 1)

Proof of Theorem 1e2m1
StepHypRef Expression
1 2m1e1 11335 . 2 (2 − 1) = 1
21eqcomi 2780 1 1 = (2 − 1)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1631  (class class class)co 6791  1c1 10137  cmin 10466  2c2 11270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7094  ax-resscn 10193  ax-1cn 10194  ax-icn 10195  ax-addcl 10196  ax-addrcl 10197  ax-mulcl 10198  ax-mulrcl 10199  ax-mulcom 10200  ax-addass 10201  ax-mulass 10202  ax-distr 10203  ax-i2m1 10204  ax-1ne0 10205  ax-1rid 10206  ax-rnegex 10207  ax-rrecex 10208  ax-cnre 10209  ax-pre-lttri 10210  ax-pre-lttrn 10211  ax-pre-ltadd 10212
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-po 5170  df-so 5171  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5992  df-fun 6031  df-fn 6032  df-f 6033  df-f1 6034  df-fo 6035  df-f1o 6036  df-fv 6037  df-riota 6752  df-ov 6794  df-oprab 6795  df-mpt2 6796  df-er 7894  df-en 8108  df-dom 8109  df-sdom 8110  df-pnf 10276  df-mnf 10277  df-ltxr 10279  df-sub 10468  df-2 11279
This theorem is referenced by:  ige2m1fz1  12629  bcn2m1  13308  bcn2p1  13309  swrd2lsw  13898  wwlksnextinj  27036  clwlkclwwlklem2a1  27135  clwlkclwwlklem2a4  27140  clwlkclwwlk2  27146  clwlkclwwlkf  27151  extwwlkfablem1OLD  27517  numclwwlk1lem2foalem  27530  numclwwlk1lem2fo  27537  frgrreggt1  27585  wallispilem5  40796  stirlinglem1  40801  fourierdlem103  40936  fourierdlem104  40937
  Copyright terms: Public domain W3C validator