![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3m1e2 | Structured version Visualization version GIF version |
Description: 3 - 1 = 2. (Contributed by FL, 17-Oct-2010.) (Revised by NM, 10-Dec-2017.) (Proof shortened by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
3m1e2 | ⊢ (3 − 1) = 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 12294 | . 2 ⊢ 2 ∈ ℂ | |
2 | ax-1cn 11174 | . 2 ⊢ 1 ∈ ℂ | |
3 | df-3 12283 | . 2 ⊢ 3 = (2 + 1) | |
4 | 1, 2, 3 | mvrraddi 11484 | 1 ⊢ (3 − 1) = 2 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 (class class class)co 7412 1c1 11117 − cmin 11451 2c2 12274 3c3 12275 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-ltxr 11260 df-sub 11453 df-2 12282 df-3 12283 |
This theorem is referenced by: halfpm6th 12440 ige3m2fz 13532 fzo13pr 13723 fzo0to3tp 13725 fldiv4p1lem1div2 13807 lsws3 14863 bpoly3 16009 rpnnen2lem3 16166 rpnnen2lem11 16174 3prm 16638 prmo3 16981 1cubrlem 26687 1cubr 26688 quart1 26702 log2cnv 26790 log2ublem3 26794 2lgslem3b 27243 2lgslem3d 27245 axlowdimlem16 28648 2pthd 29627 wlk2v2e 29843 ex-bc 30138 cyc3fv1 32732 cyc3fv2 32733 cyc3fv3 32734 fib4 33867 circlemethhgt 34119 cusgracyclt3v 34611 itg2addnclem3 37005 lcm3un 41347 aks4d1p1 41408 2np3bcnp1 41427 lhe4.4ex1a 43551 wallispilem4 45243 fmtnoge3 46657 fmtnoprmfac2lem1 46693 nnsum3primesle9 46921 |
Copyright terms: Public domain | W3C validator |