| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3m1e2 | Structured version Visualization version GIF version | ||
| Description: 3 - 1 = 2. (Contributed by FL, 17-Oct-2010.) (Revised by NM, 10-Dec-2017.) (Proof shortened by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| 3m1e2 | ⊢ (3 − 1) = 2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2cn 12203 | . 2 ⊢ 2 ∈ ℂ | |
| 2 | ax-1cn 11067 | . 2 ⊢ 1 ∈ ℂ | |
| 3 | df-3 12192 | . 2 ⊢ 3 = (2 + 1) | |
| 4 | 1, 2, 3 | mvrraddi 11380 | 1 ⊢ (3 − 1) = 2 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 (class class class)co 7349 1c1 11010 − cmin 11347 2c2 12183 3c3 12184 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-ltxr 11154 df-sub 11349 df-2 12191 df-3 12192 |
| This theorem is referenced by: ige3m2fz 13451 fzo13pr 13652 fzo0to3tp 13655 fldiv4p1lem1div2 13739 lsws3 14812 bpoly3 15965 rpnnen2lem3 16125 rpnnen2lem11 16133 3prm 16605 prmo3 16953 1cubrlem 26749 1cubr 26750 quart1 26764 log2cnv 26852 log2ublem3 26856 2lgslem3b 27306 2lgslem3d 27308 axlowdimlem16 28902 2pthd 29885 wlk2v2e 30101 ex-bc 30396 cyc3fv1 33079 cyc3fv2 33080 cyc3fv3 33081 iconstr 33733 cos9thpiminplylem2 33750 cos9thpiminplylem3 33751 fib4 34372 circlemethhgt 34611 cusgracyclt3v 35129 itg2addnclem3 37653 lcm3un 41988 aks4d1p1 42049 2np3bcnp1 42117 sin2t3rdpi 42326 cos2t3rdpi 42327 lhe4.4ex1a 44302 wallispilem4 46049 fmtnoge3 47514 fmtnoprmfac2lem1 47550 nnsum3primesle9 47778 grtriclwlk3 47929 gpg3kgrtriexlem5 48071 |
| Copyright terms: Public domain | W3C validator |