Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3m1e2 | Structured version Visualization version GIF version |
Description: 3 - 1 = 2. (Contributed by FL, 17-Oct-2010.) (Revised by NM, 10-Dec-2017.) (Proof shortened by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
3m1e2 | ⊢ (3 − 1) = 2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 12031 | . 2 ⊢ 2 ∈ ℂ | |
2 | ax-1cn 10913 | . 2 ⊢ 1 ∈ ℂ | |
3 | df-3 12020 | . 2 ⊢ 3 = (2 + 1) | |
4 | 1, 2, 3 | mvrraddi 11221 | 1 ⊢ (3 − 1) = 2 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 (class class class)co 7268 1c1 10856 − cmin 11188 2c2 12011 3c3 12012 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-po 5502 df-so 5503 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-ltxr 10998 df-sub 11190 df-2 12019 df-3 12020 |
This theorem is referenced by: halfpm6th 12177 ige3m2fz 13262 fzo13pr 13452 fzo0to3tp 13454 fldiv4p1lem1div2 13536 lsws3 14599 bpoly3 15749 rpnnen2lem3 15906 rpnnen2lem11 15914 3prm 16380 prmo3 16723 1cubrlem 25972 1cubr 25973 quart1 25987 log2cnv 26075 log2ublem3 26079 2lgslem3b 26526 2lgslem3d 26528 axlowdimlem16 27306 2pthd 28284 wlk2v2e 28500 ex-bc 28795 cyc3fv1 31383 cyc3fv2 31384 cyc3fv3 31385 fib4 32350 circlemethhgt 32602 cusgracyclt3v 33097 itg2addnclem3 35809 lcm3un 40003 aks4d1p1 40064 2np3bcnp1 40080 lhe4.4ex1a 41900 wallispilem4 43563 fmtnoge3 44934 fmtnoprmfac2lem1 44970 nnsum3primesle9 45198 |
Copyright terms: Public domain | W3C validator |