Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > bcn2p1 | Structured version Visualization version GIF version |
Description: Compute the binomial coefficient "(𝑁 + 1) choose 2 " from "𝑁 choose 2 ": N + ( N 2 ) = ( (N+1) 2 ). (Contributed by Alexander van der Vekens, 8-Jan-2018.) |
Ref | Expression |
---|---|
bcn2p1 | ⊢ (𝑁 ∈ ℕ0 → (𝑁 + (𝑁C2)) = ((𝑁 + 1)C2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0cn 12271 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
2 | 2z 12380 | . . . . 5 ⊢ 2 ∈ ℤ | |
3 | bccl 14064 | . . . . 5 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ∈ ℤ) → (𝑁C2) ∈ ℕ0) | |
4 | 2, 3 | mpan2 687 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑁C2) ∈ ℕ0) |
5 | 4 | nn0cnd 12323 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (𝑁C2) ∈ ℂ) |
6 | 1, 5 | addcomd 11205 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + (𝑁C2)) = ((𝑁C2) + 𝑁)) |
7 | bcn1 14055 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑁C1) = 𝑁) | |
8 | 1e2m1 12128 | . . . . . 6 ⊢ 1 = (2 − 1) | |
9 | 8 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 1 = (2 − 1)) |
10 | 9 | oveq2d 7311 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → (𝑁C1) = (𝑁C(2 − 1))) |
11 | 7, 10 | eqtr3d 2775 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 = (𝑁C(2 − 1))) |
12 | 11 | oveq2d 7311 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((𝑁C2) + 𝑁) = ((𝑁C2) + (𝑁C(2 − 1)))) |
13 | bcpasc 14063 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 2 ∈ ℤ) → ((𝑁C2) + (𝑁C(2 − 1))) = ((𝑁 + 1)C2)) | |
14 | 2, 13 | mpan2 687 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((𝑁C2) + (𝑁C(2 − 1))) = ((𝑁 + 1)C2)) |
15 | 6, 12, 14 | 3eqtrd 2777 | 1 ⊢ (𝑁 ∈ ℕ0 → (𝑁 + (𝑁C2)) = ((𝑁 + 1)C2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2101 (class class class)co 7295 1c1 10900 + caddc 10902 − cmin 11233 2c2 12056 ℕ0cn0 12261 ℤcz 12347 Ccbc 14044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-cnex 10955 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 ax-pre-mulgt0 10976 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-om 7733 df-1st 7851 df-2nd 7852 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-rdg 8261 df-er 8518 df-en 8754 df-dom 8755 df-sdom 8756 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 df-sub 11235 df-neg 11236 df-div 11661 df-nn 12002 df-2 12064 df-n0 12262 df-z 12348 df-uz 12611 df-rp 12759 df-fz 13268 df-seq 13750 df-fac 14016 df-bc 14045 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |