MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcn2p1 Structured version   Visualization version   GIF version

Theorem bcn2p1 14067
Description: Compute the binomial coefficient "(𝑁 + 1) choose 2 " from "𝑁 choose 2 ": N + ( N 2 ) = ( (N+1) 2 ). (Contributed by Alexander van der Vekens, 8-Jan-2018.)
Assertion
Ref Expression
bcn2p1 (𝑁 ∈ ℕ0 → (𝑁 + (𝑁C2)) = ((𝑁 + 1)C2))

Proof of Theorem bcn2p1
StepHypRef Expression
1 nn0cn 12271 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
2 2z 12380 . . . . 5 2 ∈ ℤ
3 bccl 14064 . . . . 5 ((𝑁 ∈ ℕ0 ∧ 2 ∈ ℤ) → (𝑁C2) ∈ ℕ0)
42, 3mpan2 687 . . . 4 (𝑁 ∈ ℕ0 → (𝑁C2) ∈ ℕ0)
54nn0cnd 12323 . . 3 (𝑁 ∈ ℕ0 → (𝑁C2) ∈ ℂ)
61, 5addcomd 11205 . 2 (𝑁 ∈ ℕ0 → (𝑁 + (𝑁C2)) = ((𝑁C2) + 𝑁))
7 bcn1 14055 . . . 4 (𝑁 ∈ ℕ0 → (𝑁C1) = 𝑁)
8 1e2m1 12128 . . . . . 6 1 = (2 − 1)
98a1i 11 . . . . 5 (𝑁 ∈ ℕ0 → 1 = (2 − 1))
109oveq2d 7311 . . . 4 (𝑁 ∈ ℕ0 → (𝑁C1) = (𝑁C(2 − 1)))
117, 10eqtr3d 2775 . . 3 (𝑁 ∈ ℕ0𝑁 = (𝑁C(2 − 1)))
1211oveq2d 7311 . 2 (𝑁 ∈ ℕ0 → ((𝑁C2) + 𝑁) = ((𝑁C2) + (𝑁C(2 − 1))))
13 bcpasc 14063 . . 3 ((𝑁 ∈ ℕ0 ∧ 2 ∈ ℤ) → ((𝑁C2) + (𝑁C(2 − 1))) = ((𝑁 + 1)C2))
142, 13mpan2 687 . 2 (𝑁 ∈ ℕ0 → ((𝑁C2) + (𝑁C(2 − 1))) = ((𝑁 + 1)C2))
156, 12, 143eqtrd 2777 1 (𝑁 ∈ ℕ0 → (𝑁 + (𝑁C2)) = ((𝑁 + 1)C2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2101  (class class class)co 7295  1c1 10900   + caddc 10902  cmin 11233  2c2 12056  0cn0 12261  cz 12347  Ccbc 14044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608  ax-cnex 10955  ax-resscn 10956  ax-1cn 10957  ax-icn 10958  ax-addcl 10959  ax-addrcl 10960  ax-mulcl 10961  ax-mulrcl 10962  ax-mulcom 10963  ax-addass 10964  ax-mulass 10965  ax-distr 10966  ax-i2m1 10967  ax-1ne0 10968  ax-1rid 10969  ax-rnegex 10970  ax-rrecex 10971  ax-cnre 10972  ax-pre-lttri 10973  ax-pre-lttrn 10974  ax-pre-ltadd 10975  ax-pre-mulgt0 10976
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3222  df-reu 3223  df-rab 3224  df-v 3436  df-sbc 3719  df-csb 3835  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-pss 3908  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-iun 4929  df-br 5078  df-opab 5140  df-mpt 5161  df-tr 5195  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6399  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-fv 6455  df-riota 7252  df-ov 7298  df-oprab 7299  df-mpo 7300  df-om 7733  df-1st 7851  df-2nd 7852  df-frecs 8117  df-wrecs 8148  df-recs 8222  df-rdg 8261  df-er 8518  df-en 8754  df-dom 8755  df-sdom 8756  df-pnf 11039  df-mnf 11040  df-xr 11041  df-ltxr 11042  df-le 11043  df-sub 11235  df-neg 11236  df-div 11661  df-nn 12002  df-2 12064  df-n0 12262  df-z 12348  df-uz 12611  df-rp 12759  df-fz 13268  df-seq 13750  df-fac 14016  df-bc 14045
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator