MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcn2m1 Structured version   Visualization version   GIF version

Theorem bcn2m1 14250
Description: Compute the binomial coefficient "𝑁 choose 2 " from "(𝑁 − 1) choose 2 ": (N-1) + ( (N-1) 2 ) = ( N 2 ). (Contributed by Alexander van der Vekens, 7-Jan-2018.)
Assertion
Ref Expression
bcn2m1 (𝑁 ∈ ℕ → ((𝑁 − 1) + ((𝑁 − 1)C2)) = (𝑁C2))

Proof of Theorem bcn2m1
StepHypRef Expression
1 nnm1nn0 12444 . . . 4 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
21nn0cnd 12466 . . 3 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℂ)
3 2z 12526 . . . . 5 2 ∈ ℤ
4 bccl 14248 . . . . 5 (((𝑁 − 1) ∈ ℕ0 ∧ 2 ∈ ℤ) → ((𝑁 − 1)C2) ∈ ℕ0)
51, 3, 4sylancl 586 . . . 4 (𝑁 ∈ ℕ → ((𝑁 − 1)C2) ∈ ℕ0)
65nn0cnd 12466 . . 3 (𝑁 ∈ ℕ → ((𝑁 − 1)C2) ∈ ℂ)
72, 6addcomd 11337 . 2 (𝑁 ∈ ℕ → ((𝑁 − 1) + ((𝑁 − 1)C2)) = (((𝑁 − 1)C2) + (𝑁 − 1)))
8 bcn1 14239 . . . . . 6 ((𝑁 − 1) ∈ ℕ0 → ((𝑁 − 1)C1) = (𝑁 − 1))
98eqcomd 2735 . . . . 5 ((𝑁 − 1) ∈ ℕ0 → (𝑁 − 1) = ((𝑁 − 1)C1))
101, 9syl 17 . . . 4 (𝑁 ∈ ℕ → (𝑁 − 1) = ((𝑁 − 1)C1))
11 1e2m1 12269 . . . . . 6 1 = (2 − 1)
1211a1i 11 . . . . 5 (𝑁 ∈ ℕ → 1 = (2 − 1))
1312oveq2d 7369 . . . 4 (𝑁 ∈ ℕ → ((𝑁 − 1)C1) = ((𝑁 − 1)C(2 − 1)))
1410, 13eqtrd 2764 . . 3 (𝑁 ∈ ℕ → (𝑁 − 1) = ((𝑁 − 1)C(2 − 1)))
1514oveq2d 7369 . 2 (𝑁 ∈ ℕ → (((𝑁 − 1)C2) + (𝑁 − 1)) = (((𝑁 − 1)C2) + ((𝑁 − 1)C(2 − 1))))
16 bcpasc 14247 . . . 4 (((𝑁 − 1) ∈ ℕ0 ∧ 2 ∈ ℤ) → (((𝑁 − 1)C2) + ((𝑁 − 1)C(2 − 1))) = (((𝑁 − 1) + 1)C2))
171, 3, 16sylancl 586 . . 3 (𝑁 ∈ ℕ → (((𝑁 − 1)C2) + ((𝑁 − 1)C(2 − 1))) = (((𝑁 − 1) + 1)C2))
18 nncn 12155 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
19 1cnd 11129 . . . . 5 (𝑁 ∈ ℕ → 1 ∈ ℂ)
2018, 19npcand 11498 . . . 4 (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁)
2120oveq1d 7368 . . 3 (𝑁 ∈ ℕ → (((𝑁 − 1) + 1)C2) = (𝑁C2))
2217, 21eqtrd 2764 . 2 (𝑁 ∈ ℕ → (((𝑁 − 1)C2) + ((𝑁 − 1)C(2 − 1))) = (𝑁C2))
237, 15, 223eqtrd 2768 1 (𝑁 ∈ ℕ → ((𝑁 − 1) + ((𝑁 − 1)C2)) = (𝑁C2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  (class class class)co 7353  1c1 11029   + caddc 11031  cmin 11366  cn 12147  2c2 12202  0cn0 12403  cz 12490  Ccbc 14228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-n0 12404  df-z 12491  df-uz 12755  df-rp 12913  df-fz 13430  df-seq 13928  df-fac 14200  df-bc 14229
This theorem is referenced by:  cusgrsize2inds  29418
  Copyright terms: Public domain W3C validator