MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bcn2m1 Structured version   Visualization version   GIF version

Theorem bcn2m1 14265
Description: Compute the binomial coefficient "𝑁 choose 2 " from "(𝑁 − 1) choose 2 ": (N-1) + ( (N-1) 2 ) = ( N 2 ). (Contributed by Alexander van der Vekens, 7-Jan-2018.)
Assertion
Ref Expression
bcn2m1 (𝑁 ∈ ℕ → ((𝑁 − 1) + ((𝑁 − 1)C2)) = (𝑁C2))

Proof of Theorem bcn2m1
StepHypRef Expression
1 nnm1nn0 12459 . . . 4 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
21nn0cnd 12481 . . 3 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℂ)
3 2z 12541 . . . . 5 2 ∈ ℤ
4 bccl 14263 . . . . 5 (((𝑁 − 1) ∈ ℕ0 ∧ 2 ∈ ℤ) → ((𝑁 − 1)C2) ∈ ℕ0)
51, 3, 4sylancl 586 . . . 4 (𝑁 ∈ ℕ → ((𝑁 − 1)C2) ∈ ℕ0)
65nn0cnd 12481 . . 3 (𝑁 ∈ ℕ → ((𝑁 − 1)C2) ∈ ℂ)
72, 6addcomd 11352 . 2 (𝑁 ∈ ℕ → ((𝑁 − 1) + ((𝑁 − 1)C2)) = (((𝑁 − 1)C2) + (𝑁 − 1)))
8 bcn1 14254 . . . . . 6 ((𝑁 − 1) ∈ ℕ0 → ((𝑁 − 1)C1) = (𝑁 − 1))
98eqcomd 2735 . . . . 5 ((𝑁 − 1) ∈ ℕ0 → (𝑁 − 1) = ((𝑁 − 1)C1))
101, 9syl 17 . . . 4 (𝑁 ∈ ℕ → (𝑁 − 1) = ((𝑁 − 1)C1))
11 1e2m1 12284 . . . . . 6 1 = (2 − 1)
1211a1i 11 . . . . 5 (𝑁 ∈ ℕ → 1 = (2 − 1))
1312oveq2d 7385 . . . 4 (𝑁 ∈ ℕ → ((𝑁 − 1)C1) = ((𝑁 − 1)C(2 − 1)))
1410, 13eqtrd 2764 . . 3 (𝑁 ∈ ℕ → (𝑁 − 1) = ((𝑁 − 1)C(2 − 1)))
1514oveq2d 7385 . 2 (𝑁 ∈ ℕ → (((𝑁 − 1)C2) + (𝑁 − 1)) = (((𝑁 − 1)C2) + ((𝑁 − 1)C(2 − 1))))
16 bcpasc 14262 . . . 4 (((𝑁 − 1) ∈ ℕ0 ∧ 2 ∈ ℤ) → (((𝑁 − 1)C2) + ((𝑁 − 1)C(2 − 1))) = (((𝑁 − 1) + 1)C2))
171, 3, 16sylancl 586 . . 3 (𝑁 ∈ ℕ → (((𝑁 − 1)C2) + ((𝑁 − 1)C(2 − 1))) = (((𝑁 − 1) + 1)C2))
18 nncn 12170 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
19 1cnd 11145 . . . . 5 (𝑁 ∈ ℕ → 1 ∈ ℂ)
2018, 19npcand 11513 . . . 4 (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁)
2120oveq1d 7384 . . 3 (𝑁 ∈ ℕ → (((𝑁 − 1) + 1)C2) = (𝑁C2))
2217, 21eqtrd 2764 . 2 (𝑁 ∈ ℕ → (((𝑁 − 1)C2) + ((𝑁 − 1)C(2 − 1))) = (𝑁C2))
237, 15, 223eqtrd 2768 1 (𝑁 ∈ ℕ → ((𝑁 − 1) + ((𝑁 − 1)C2)) = (𝑁C2))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  (class class class)co 7369  1c1 11045   + caddc 11047  cmin 11381  cn 12162  2c2 12217  0cn0 12418  cz 12505  Ccbc 14243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-seq 13943  df-fac 14215  df-bc 14244
This theorem is referenced by:  cusgrsize2inds  29357
  Copyright terms: Public domain W3C validator