![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bcn2m1 | Structured version Visualization version GIF version |
Description: Compute the binomial coefficient "𝑁 choose 2 " from "(𝑁 − 1) choose 2 ": (N-1) + ( (N-1) 2 ) = ( N 2 ). (Contributed by Alexander van der Vekens, 7-Jan-2018.) |
Ref | Expression |
---|---|
bcn2m1 | ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) + ((𝑁 − 1)C2)) = (𝑁C2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnm1nn0 12549 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0) | |
2 | 1 | nn0cnd 12570 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℂ) |
3 | 2z 12630 | . . . . 5 ⊢ 2 ∈ ℤ | |
4 | bccl 14319 | . . . . 5 ⊢ (((𝑁 − 1) ∈ ℕ0 ∧ 2 ∈ ℤ) → ((𝑁 − 1)C2) ∈ ℕ0) | |
5 | 1, 3, 4 | sylancl 584 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1)C2) ∈ ℕ0) |
6 | 5 | nn0cnd 12570 | . . 3 ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1)C2) ∈ ℂ) |
7 | 2, 6 | addcomd 11452 | . 2 ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) + ((𝑁 − 1)C2)) = (((𝑁 − 1)C2) + (𝑁 − 1))) |
8 | bcn1 14310 | . . . . . 6 ⊢ ((𝑁 − 1) ∈ ℕ0 → ((𝑁 − 1)C1) = (𝑁 − 1)) | |
9 | 8 | eqcomd 2733 | . . . . 5 ⊢ ((𝑁 − 1) ∈ ℕ0 → (𝑁 − 1) = ((𝑁 − 1)C1)) |
10 | 1, 9 | syl 17 | . . . 4 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) = ((𝑁 − 1)C1)) |
11 | 1e2m1 12375 | . . . . . 6 ⊢ 1 = (2 − 1) | |
12 | 11 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 1 = (2 − 1)) |
13 | 12 | oveq2d 7440 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1)C1) = ((𝑁 − 1)C(2 − 1))) |
14 | 10, 13 | eqtrd 2767 | . . 3 ⊢ (𝑁 ∈ ℕ → (𝑁 − 1) = ((𝑁 − 1)C(2 − 1))) |
15 | 14 | oveq2d 7440 | . 2 ⊢ (𝑁 ∈ ℕ → (((𝑁 − 1)C2) + (𝑁 − 1)) = (((𝑁 − 1)C2) + ((𝑁 − 1)C(2 − 1)))) |
16 | bcpasc 14318 | . . . 4 ⊢ (((𝑁 − 1) ∈ ℕ0 ∧ 2 ∈ ℤ) → (((𝑁 − 1)C2) + ((𝑁 − 1)C(2 − 1))) = (((𝑁 − 1) + 1)C2)) | |
17 | 1, 3, 16 | sylancl 584 | . . 3 ⊢ (𝑁 ∈ ℕ → (((𝑁 − 1)C2) + ((𝑁 − 1)C(2 − 1))) = (((𝑁 − 1) + 1)C2)) |
18 | nncn 12256 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
19 | 1cnd 11245 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 1 ∈ ℂ) | |
20 | 18, 19 | npcand 11611 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) + 1) = 𝑁) |
21 | 20 | oveq1d 7439 | . . 3 ⊢ (𝑁 ∈ ℕ → (((𝑁 − 1) + 1)C2) = (𝑁C2)) |
22 | 17, 21 | eqtrd 2767 | . 2 ⊢ (𝑁 ∈ ℕ → (((𝑁 − 1)C2) + ((𝑁 − 1)C(2 − 1))) = (𝑁C2)) |
23 | 7, 15, 22 | 3eqtrd 2771 | 1 ⊢ (𝑁 ∈ ℕ → ((𝑁 − 1) + ((𝑁 − 1)C2)) = (𝑁C2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 (class class class)co 7424 1c1 11145 + caddc 11147 − cmin 11480 ℕcn 12248 2c2 12303 ℕ0cn0 12508 ℤcz 12594 Ccbc 14299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-1st 7997 df-2nd 7998 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-er 8729 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-div 11908 df-nn 12249 df-2 12311 df-n0 12509 df-z 12595 df-uz 12859 df-rp 13013 df-fz 13523 df-seq 14005 df-fac 14271 df-bc 14300 |
This theorem is referenced by: cusgrsize2inds 29285 |
Copyright terms: Public domain | W3C validator |