MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlk2 Structured version   Visualization version   GIF version

Theorem clwlkclwwlk2 29965
Description: A closed walk corresponds to a closed walk as word in a simple pseudograph. (Contributed by Alexander van der Vekens, 22-Jun-2018.) (Revised by AV, 24-Apr-2021.) (Proof shortened by AV, 2-Nov-2022.)
Hypotheses
Ref Expression
clwlkclwwlk.v 𝑉 = (Vtx‘𝐺)
clwlkclwwlk.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
clwlkclwwlk2 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (∃𝑓 𝑓(ClWalks‘𝐺)(𝑃 ++ ⟨“(𝑃‘0)”⟩) ↔ 𝑃 ∈ (ClWWalks‘𝐺)))
Distinct variable groups:   𝑓,𝐸   𝑃,𝑓   𝑓,𝑉   𝑓,𝐺

Proof of Theorem clwlkclwwlk2
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 𝐺 ∈ USPGraph)
2 wrdsymb1 14478 . . . . . 6 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (𝑃‘0) ∈ 𝑉)
32s1cld 14528 . . . . 5 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → ⟨“(𝑃‘0)”⟩ ∈ Word 𝑉)
4 ccatcl 14499 . . . . 5 ((𝑃 ∈ Word 𝑉 ∧ ⟨“(𝑃‘0)”⟩ ∈ Word 𝑉) → (𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ Word 𝑉)
53, 4syldan 591 . . . 4 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ Word 𝑉)
653adant1 1130 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ Word 𝑉)
7 lencl 14458 . . . . . . . 8 (𝑃 ∈ Word 𝑉 → (♯‘𝑃) ∈ ℕ0)
8 1e2m1 12268 . . . . . . . . . 10 1 = (2 − 1)
98breq1i 5102 . . . . . . . . 9 (1 ≤ (♯‘𝑃) ↔ (2 − 1) ≤ (♯‘𝑃))
10 2re 12220 . . . . . . . . . . 11 2 ∈ ℝ
1110a1i 11 . . . . . . . . . 10 ((♯‘𝑃) ∈ ℕ0 → 2 ∈ ℝ)
12 1red 11135 . . . . . . . . . 10 ((♯‘𝑃) ∈ ℕ0 → 1 ∈ ℝ)
13 nn0re 12411 . . . . . . . . . 10 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℝ)
1411, 12, 13lesubaddd 11735 . . . . . . . . 9 ((♯‘𝑃) ∈ ℕ0 → ((2 − 1) ≤ (♯‘𝑃) ↔ 2 ≤ ((♯‘𝑃) + 1)))
159, 14bitrid 283 . . . . . . . 8 ((♯‘𝑃) ∈ ℕ0 → (1 ≤ (♯‘𝑃) ↔ 2 ≤ ((♯‘𝑃) + 1)))
167, 15syl 17 . . . . . . 7 (𝑃 ∈ Word 𝑉 → (1 ≤ (♯‘𝑃) ↔ 2 ≤ ((♯‘𝑃) + 1)))
1716biimpa 476 . . . . . 6 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 2 ≤ ((♯‘𝑃) + 1))
18 s1len 14531 . . . . . . 7 (♯‘⟨“(𝑃‘0)”⟩) = 1
1918oveq2i 7364 . . . . . 6 ((♯‘𝑃) + (♯‘⟨“(𝑃‘0)”⟩)) = ((♯‘𝑃) + 1)
2017, 19breqtrrdi 5137 . . . . 5 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 2 ≤ ((♯‘𝑃) + (♯‘⟨“(𝑃‘0)”⟩)))
21 ccatlen 14500 . . . . . 6 ((𝑃 ∈ Word 𝑉 ∧ ⟨“(𝑃‘0)”⟩ ∈ Word 𝑉) → (♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((♯‘𝑃) + (♯‘⟨“(𝑃‘0)”⟩)))
223, 21syldan 591 . . . . 5 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((♯‘𝑃) + (♯‘⟨“(𝑃‘0)”⟩)))
2320, 22breqtrrd 5123 . . . 4 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 2 ≤ (♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)))
24233adant1 1130 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 2 ≤ (♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)))
25 clwlkclwwlk.v . . . 4 𝑉 = (Vtx‘𝐺)
26 clwlkclwwlk.e . . . 4 𝐸 = (iEdg‘𝐺)
2725, 26clwlkclwwlk 29964 . . 3 ((𝐺 ∈ USPGraph ∧ (𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ Word 𝑉 ∧ 2 ≤ (♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩))) → (∃𝑓 𝑓(ClWalks‘𝐺)(𝑃 ++ ⟨“(𝑃‘0)”⟩) ↔ ((lastS‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘0) ∧ ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)) ∈ (ClWWalks‘𝐺))))
281, 6, 24, 27syl3anc 1373 . 2 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (∃𝑓 𝑓(ClWalks‘𝐺)(𝑃 ++ ⟨“(𝑃‘0)”⟩) ↔ ((lastS‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘0) ∧ ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)) ∈ (ClWWalks‘𝐺))))
29 wrdlenccats1lenm1 14547 . . . . . . . 8 (𝑃 ∈ Word 𝑉 → ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1) = (♯‘𝑃))
3029oveq2d 7369 . . . . . . 7 (𝑃 ∈ Word 𝑉 → ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix (♯‘𝑃)))
3130adantr 480 . . . . . 6 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix (♯‘𝑃)))
32 simpl 482 . . . . . . 7 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 𝑃 ∈ Word 𝑉)
33 eqidd 2730 . . . . . . 7 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (♯‘𝑃) = (♯‘𝑃))
34 pfxccatid 14665 . . . . . . 7 ((𝑃 ∈ Word 𝑉 ∧ ⟨“(𝑃‘0)”⟩ ∈ Word 𝑉 ∧ (♯‘𝑃) = (♯‘𝑃)) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix (♯‘𝑃)) = 𝑃)
3532, 3, 33, 34syl3anc 1373 . . . . . 6 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix (♯‘𝑃)) = 𝑃)
3631, 35eqtr2d 2765 . . . . 5 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 𝑃 = ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)))
3736eleq1d 2813 . . . 4 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (𝑃 ∈ (ClWWalks‘𝐺) ↔ ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)) ∈ (ClWWalks‘𝐺)))
38 lswccats1fst 14560 . . . . 5 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (lastS‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘0))
3938biantrurd 532 . . . 4 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)) ∈ (ClWWalks‘𝐺) ↔ ((lastS‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘0) ∧ ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)) ∈ (ClWWalks‘𝐺))))
4037, 39bitr2d 280 . . 3 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (((lastS‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘0) ∧ ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)) ∈ (ClWWalks‘𝐺)) ↔ 𝑃 ∈ (ClWWalks‘𝐺)))
41403adant1 1130 . 2 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (((lastS‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘0) ∧ ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)) ∈ (ClWWalks‘𝐺)) ↔ 𝑃 ∈ (ClWWalks‘𝐺)))
4228, 41bitrd 279 1 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (∃𝑓 𝑓(ClWalks‘𝐺)(𝑃 ++ ⟨“(𝑃‘0)”⟩) ↔ 𝑃 ∈ (ClWWalks‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109   class class class wbr 5095  cfv 6486  (class class class)co 7353  cr 11027  0cc0 11028  1c1 11029   + caddc 11031  cle 11169  cmin 11365  2c2 12201  0cn0 12402  chash 14255  Word cword 14438  lastSclsw 14487   ++ cconcat 14495  ⟨“cs1 14520   prefix cpfx 14595  Vtxcvtx 28959  iEdgciedg 28960  USPGraphcuspgr 29111  ClWalkscclwlks 29733  ClWWalkscclwwlk 29943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-dju 9816  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-n0 12403  df-xnn0 12476  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-hash 14256  df-word 14439  df-lsw 14488  df-concat 14496  df-s1 14521  df-substr 14566  df-pfx 14596  df-edg 29011  df-uhgr 29021  df-upgr 29045  df-uspgr 29113  df-wlks 29563  df-clwlks 29734  df-clwwlk 29944
This theorem is referenced by:  clwlkclwwlkfo  29971
  Copyright terms: Public domain W3C validator