MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlk2 Structured version   Visualization version   GIF version

Theorem clwlkclwwlk2 28058
Description: A closed walk corresponds to a closed walk as word in a simple pseudograph. (Contributed by Alexander van der Vekens, 22-Jun-2018.) (Revised by AV, 24-Apr-2021.) (Proof shortened by AV, 2-Nov-2022.)
Hypotheses
Ref Expression
clwlkclwwlk.v 𝑉 = (Vtx‘𝐺)
clwlkclwwlk.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
clwlkclwwlk2 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (∃𝑓 𝑓(ClWalks‘𝐺)(𝑃 ++ ⟨“(𝑃‘0)”⟩) ↔ 𝑃 ∈ (ClWWalks‘𝐺)))
Distinct variable groups:   𝑓,𝐸   𝑃,𝑓   𝑓,𝑉   𝑓,𝐺

Proof of Theorem clwlkclwwlk2
StepHypRef Expression
1 simp1 1138 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 𝐺 ∈ USPGraph)
2 wrdsymb1 14091 . . . . . 6 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (𝑃‘0) ∈ 𝑉)
32s1cld 14143 . . . . 5 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → ⟨“(𝑃‘0)”⟩ ∈ Word 𝑉)
4 ccatcl 14112 . . . . 5 ((𝑃 ∈ Word 𝑉 ∧ ⟨“(𝑃‘0)”⟩ ∈ Word 𝑉) → (𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ Word 𝑉)
53, 4syldan 594 . . . 4 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ Word 𝑉)
653adant1 1132 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ Word 𝑉)
7 lencl 14071 . . . . . . . 8 (𝑃 ∈ Word 𝑉 → (♯‘𝑃) ∈ ℕ0)
8 1e2m1 11940 . . . . . . . . . 10 1 = (2 − 1)
98breq1i 5050 . . . . . . . . 9 (1 ≤ (♯‘𝑃) ↔ (2 − 1) ≤ (♯‘𝑃))
10 2re 11887 . . . . . . . . . . 11 2 ∈ ℝ
1110a1i 11 . . . . . . . . . 10 ((♯‘𝑃) ∈ ℕ0 → 2 ∈ ℝ)
12 1red 10817 . . . . . . . . . 10 ((♯‘𝑃) ∈ ℕ0 → 1 ∈ ℝ)
13 nn0re 12082 . . . . . . . . . 10 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℝ)
1411, 12, 13lesubaddd 11412 . . . . . . . . 9 ((♯‘𝑃) ∈ ℕ0 → ((2 − 1) ≤ (♯‘𝑃) ↔ 2 ≤ ((♯‘𝑃) + 1)))
159, 14syl5bb 286 . . . . . . . 8 ((♯‘𝑃) ∈ ℕ0 → (1 ≤ (♯‘𝑃) ↔ 2 ≤ ((♯‘𝑃) + 1)))
167, 15syl 17 . . . . . . 7 (𝑃 ∈ Word 𝑉 → (1 ≤ (♯‘𝑃) ↔ 2 ≤ ((♯‘𝑃) + 1)))
1716biimpa 480 . . . . . 6 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 2 ≤ ((♯‘𝑃) + 1))
18 s1len 14146 . . . . . . 7 (♯‘⟨“(𝑃‘0)”⟩) = 1
1918oveq2i 7213 . . . . . 6 ((♯‘𝑃) + (♯‘⟨“(𝑃‘0)”⟩)) = ((♯‘𝑃) + 1)
2017, 19breqtrrdi 5085 . . . . 5 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 2 ≤ ((♯‘𝑃) + (♯‘⟨“(𝑃‘0)”⟩)))
21 ccatlen 14113 . . . . . 6 ((𝑃 ∈ Word 𝑉 ∧ ⟨“(𝑃‘0)”⟩ ∈ Word 𝑉) → (♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((♯‘𝑃) + (♯‘⟨“(𝑃‘0)”⟩)))
223, 21syldan 594 . . . . 5 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((♯‘𝑃) + (♯‘⟨“(𝑃‘0)”⟩)))
2320, 22breqtrrd 5071 . . . 4 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 2 ≤ (♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)))
24233adant1 1132 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 2 ≤ (♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)))
25 clwlkclwwlk.v . . . 4 𝑉 = (Vtx‘𝐺)
26 clwlkclwwlk.e . . . 4 𝐸 = (iEdg‘𝐺)
2725, 26clwlkclwwlk 28057 . . 3 ((𝐺 ∈ USPGraph ∧ (𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ Word 𝑉 ∧ 2 ≤ (♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩))) → (∃𝑓 𝑓(ClWalks‘𝐺)(𝑃 ++ ⟨“(𝑃‘0)”⟩) ↔ ((lastS‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘0) ∧ ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)) ∈ (ClWWalks‘𝐺))))
281, 6, 24, 27syl3anc 1373 . 2 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (∃𝑓 𝑓(ClWalks‘𝐺)(𝑃 ++ ⟨“(𝑃‘0)”⟩) ↔ ((lastS‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘0) ∧ ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)) ∈ (ClWWalks‘𝐺))))
29 wrdlenccats1lenm1 14162 . . . . . . . 8 (𝑃 ∈ Word 𝑉 → ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1) = (♯‘𝑃))
3029oveq2d 7218 . . . . . . 7 (𝑃 ∈ Word 𝑉 → ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix (♯‘𝑃)))
3130adantr 484 . . . . . 6 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix (♯‘𝑃)))
32 simpl 486 . . . . . . 7 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 𝑃 ∈ Word 𝑉)
33 eqidd 2735 . . . . . . 7 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (♯‘𝑃) = (♯‘𝑃))
34 pfxccatid 14289 . . . . . . 7 ((𝑃 ∈ Word 𝑉 ∧ ⟨“(𝑃‘0)”⟩ ∈ Word 𝑉 ∧ (♯‘𝑃) = (♯‘𝑃)) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix (♯‘𝑃)) = 𝑃)
3532, 3, 33, 34syl3anc 1373 . . . . . 6 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix (♯‘𝑃)) = 𝑃)
3631, 35eqtr2d 2775 . . . . 5 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 𝑃 = ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)))
3736eleq1d 2818 . . . 4 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (𝑃 ∈ (ClWWalks‘𝐺) ↔ ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)) ∈ (ClWWalks‘𝐺)))
38 lswccats1fst 14180 . . . . 5 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (lastS‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘0))
3938biantrurd 536 . . . 4 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)) ∈ (ClWWalks‘𝐺) ↔ ((lastS‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘0) ∧ ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)) ∈ (ClWWalks‘𝐺))))
4037, 39bitr2d 283 . . 3 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (((lastS‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘0) ∧ ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)) ∈ (ClWWalks‘𝐺)) ↔ 𝑃 ∈ (ClWWalks‘𝐺)))
41403adant1 1132 . 2 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (((lastS‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘0) ∧ ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)) ∈ (ClWWalks‘𝐺)) ↔ 𝑃 ∈ (ClWWalks‘𝐺)))
4228, 41bitrd 282 1 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (∃𝑓 𝑓(ClWalks‘𝐺)(𝑃 ++ ⟨“(𝑃‘0)”⟩) ↔ 𝑃 ∈ (ClWWalks‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wex 1787  wcel 2110   class class class wbr 5043  cfv 6369  (class class class)co 7202  cr 10711  0cc0 10712  1c1 10713   + caddc 10715  cle 10851  cmin 11045  2c2 11868  0cn0 12073  chash 13879  Word cword 14052  lastSclsw 14100   ++ cconcat 14108  ⟨“cs1 14135   prefix cpfx 14218  Vtxcvtx 27059  iEdgciedg 27060  USPGraphcuspgr 27211  ClWalkscclwlks 27829  ClWWalkscclwwlk 28036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-ifp 1064  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-2o 8192  df-oadd 8195  df-er 8380  df-map 8499  df-pm 8500  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-dju 9500  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-2 11876  df-n0 12074  df-xnn0 12146  df-z 12160  df-uz 12422  df-rp 12570  df-fz 13079  df-fzo 13222  df-hash 13880  df-word 14053  df-lsw 14101  df-concat 14109  df-s1 14136  df-substr 14189  df-pfx 14219  df-edg 27111  df-uhgr 27121  df-upgr 27145  df-uspgr 27213  df-wlks 27659  df-clwlks 27830  df-clwwlk 28037
This theorem is referenced by:  clwlkclwwlkfo  28064
  Copyright terms: Public domain W3C validator