MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlk2 Structured version   Visualization version   GIF version

Theorem clwlkclwwlk2 29984
Description: A closed walk corresponds to a closed walk as word in a simple pseudograph. (Contributed by Alexander van der Vekens, 22-Jun-2018.) (Revised by AV, 24-Apr-2021.) (Proof shortened by AV, 2-Nov-2022.)
Hypotheses
Ref Expression
clwlkclwwlk.v 𝑉 = (Vtx‘𝐺)
clwlkclwwlk.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
clwlkclwwlk2 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (∃𝑓 𝑓(ClWalks‘𝐺)(𝑃 ++ ⟨“(𝑃‘0)”⟩) ↔ 𝑃 ∈ (ClWWalks‘𝐺)))
Distinct variable groups:   𝑓,𝐸   𝑃,𝑓   𝑓,𝑉   𝑓,𝐺

Proof of Theorem clwlkclwwlk2
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 𝐺 ∈ USPGraph)
2 wrdsymb1 14571 . . . . . 6 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (𝑃‘0) ∈ 𝑉)
32s1cld 14621 . . . . 5 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → ⟨“(𝑃‘0)”⟩ ∈ Word 𝑉)
4 ccatcl 14592 . . . . 5 ((𝑃 ∈ Word 𝑉 ∧ ⟨“(𝑃‘0)”⟩ ∈ Word 𝑉) → (𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ Word 𝑉)
53, 4syldan 591 . . . 4 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ Word 𝑉)
653adant1 1130 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ Word 𝑉)
7 lencl 14551 . . . . . . . 8 (𝑃 ∈ Word 𝑉 → (♯‘𝑃) ∈ ℕ0)
8 1e2m1 12367 . . . . . . . . . 10 1 = (2 − 1)
98breq1i 5126 . . . . . . . . 9 (1 ≤ (♯‘𝑃) ↔ (2 − 1) ≤ (♯‘𝑃))
10 2re 12314 . . . . . . . . . . 11 2 ∈ ℝ
1110a1i 11 . . . . . . . . . 10 ((♯‘𝑃) ∈ ℕ0 → 2 ∈ ℝ)
12 1red 11236 . . . . . . . . . 10 ((♯‘𝑃) ∈ ℕ0 → 1 ∈ ℝ)
13 nn0re 12510 . . . . . . . . . 10 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℝ)
1411, 12, 13lesubaddd 11834 . . . . . . . . 9 ((♯‘𝑃) ∈ ℕ0 → ((2 − 1) ≤ (♯‘𝑃) ↔ 2 ≤ ((♯‘𝑃) + 1)))
159, 14bitrid 283 . . . . . . . 8 ((♯‘𝑃) ∈ ℕ0 → (1 ≤ (♯‘𝑃) ↔ 2 ≤ ((♯‘𝑃) + 1)))
167, 15syl 17 . . . . . . 7 (𝑃 ∈ Word 𝑉 → (1 ≤ (♯‘𝑃) ↔ 2 ≤ ((♯‘𝑃) + 1)))
1716biimpa 476 . . . . . 6 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 2 ≤ ((♯‘𝑃) + 1))
18 s1len 14624 . . . . . . 7 (♯‘⟨“(𝑃‘0)”⟩) = 1
1918oveq2i 7416 . . . . . 6 ((♯‘𝑃) + (♯‘⟨“(𝑃‘0)”⟩)) = ((♯‘𝑃) + 1)
2017, 19breqtrrdi 5161 . . . . 5 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 2 ≤ ((♯‘𝑃) + (♯‘⟨“(𝑃‘0)”⟩)))
21 ccatlen 14593 . . . . . 6 ((𝑃 ∈ Word 𝑉 ∧ ⟨“(𝑃‘0)”⟩ ∈ Word 𝑉) → (♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((♯‘𝑃) + (♯‘⟨“(𝑃‘0)”⟩)))
223, 21syldan 591 . . . . 5 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((♯‘𝑃) + (♯‘⟨“(𝑃‘0)”⟩)))
2320, 22breqtrrd 5147 . . . 4 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 2 ≤ (♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)))
24233adant1 1130 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 2 ≤ (♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)))
25 clwlkclwwlk.v . . . 4 𝑉 = (Vtx‘𝐺)
26 clwlkclwwlk.e . . . 4 𝐸 = (iEdg‘𝐺)
2725, 26clwlkclwwlk 29983 . . 3 ((𝐺 ∈ USPGraph ∧ (𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ Word 𝑉 ∧ 2 ≤ (♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩))) → (∃𝑓 𝑓(ClWalks‘𝐺)(𝑃 ++ ⟨“(𝑃‘0)”⟩) ↔ ((lastS‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘0) ∧ ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)) ∈ (ClWWalks‘𝐺))))
281, 6, 24, 27syl3anc 1373 . 2 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (∃𝑓 𝑓(ClWalks‘𝐺)(𝑃 ++ ⟨“(𝑃‘0)”⟩) ↔ ((lastS‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘0) ∧ ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)) ∈ (ClWWalks‘𝐺))))
29 wrdlenccats1lenm1 14640 . . . . . . . 8 (𝑃 ∈ Word 𝑉 → ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1) = (♯‘𝑃))
3029oveq2d 7421 . . . . . . 7 (𝑃 ∈ Word 𝑉 → ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix (♯‘𝑃)))
3130adantr 480 . . . . . 6 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix (♯‘𝑃)))
32 simpl 482 . . . . . . 7 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 𝑃 ∈ Word 𝑉)
33 eqidd 2736 . . . . . . 7 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (♯‘𝑃) = (♯‘𝑃))
34 pfxccatid 14759 . . . . . . 7 ((𝑃 ∈ Word 𝑉 ∧ ⟨“(𝑃‘0)”⟩ ∈ Word 𝑉 ∧ (♯‘𝑃) = (♯‘𝑃)) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix (♯‘𝑃)) = 𝑃)
3532, 3, 33, 34syl3anc 1373 . . . . . 6 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix (♯‘𝑃)) = 𝑃)
3631, 35eqtr2d 2771 . . . . 5 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 𝑃 = ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)))
3736eleq1d 2819 . . . 4 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (𝑃 ∈ (ClWWalks‘𝐺) ↔ ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)) ∈ (ClWWalks‘𝐺)))
38 lswccats1fst 14653 . . . . 5 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (lastS‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘0))
3938biantrurd 532 . . . 4 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)) ∈ (ClWWalks‘𝐺) ↔ ((lastS‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘0) ∧ ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)) ∈ (ClWWalks‘𝐺))))
4037, 39bitr2d 280 . . 3 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (((lastS‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘0) ∧ ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)) ∈ (ClWWalks‘𝐺)) ↔ 𝑃 ∈ (ClWWalks‘𝐺)))
41403adant1 1130 . 2 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (((lastS‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘0) ∧ ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)) ∈ (ClWWalks‘𝐺)) ↔ 𝑃 ∈ (ClWWalks‘𝐺)))
4228, 41bitrd 279 1 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (∃𝑓 𝑓(ClWalks‘𝐺)(𝑃 ++ ⟨“(𝑃‘0)”⟩) ↔ 𝑃 ∈ (ClWWalks‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2108   class class class wbr 5119  cfv 6531  (class class class)co 7405  cr 11128  0cc0 11129  1c1 11130   + caddc 11132  cle 11270  cmin 11466  2c2 12295  0cn0 12501  chash 14348  Word cword 14531  lastSclsw 14580   ++ cconcat 14588  ⟨“cs1 14613   prefix cpfx 14688  Vtxcvtx 28975  iEdgciedg 28976  USPGraphcuspgr 29127  ClWalkscclwlks 29752  ClWWalkscclwwlk 29962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-er 8719  df-map 8842  df-pm 8843  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-rp 13009  df-fz 13525  df-fzo 13672  df-hash 14349  df-word 14532  df-lsw 14581  df-concat 14589  df-s1 14614  df-substr 14659  df-pfx 14689  df-edg 29027  df-uhgr 29037  df-upgr 29061  df-uspgr 29129  df-wlks 29579  df-clwlks 29753  df-clwwlk 29963
This theorem is referenced by:  clwlkclwwlkfo  29990
  Copyright terms: Public domain W3C validator