MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwlkclwwlk2 Structured version   Visualization version   GIF version

Theorem clwlkclwwlk2 29973
Description: A closed walk corresponds to a closed walk as word in a simple pseudograph. (Contributed by Alexander van der Vekens, 22-Jun-2018.) (Revised by AV, 24-Apr-2021.) (Proof shortened by AV, 2-Nov-2022.)
Hypotheses
Ref Expression
clwlkclwwlk.v 𝑉 = (Vtx‘𝐺)
clwlkclwwlk.e 𝐸 = (iEdg‘𝐺)
Assertion
Ref Expression
clwlkclwwlk2 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (∃𝑓 𝑓(ClWalks‘𝐺)(𝑃 ++ ⟨“(𝑃‘0)”⟩) ↔ 𝑃 ∈ (ClWWalks‘𝐺)))
Distinct variable groups:   𝑓,𝐸   𝑃,𝑓   𝑓,𝑉   𝑓,𝐺

Proof of Theorem clwlkclwwlk2
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 𝐺 ∈ USPGraph)
2 wrdsymb1 14452 . . . . . 6 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (𝑃‘0) ∈ 𝑉)
32s1cld 14503 . . . . 5 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → ⟨“(𝑃‘0)”⟩ ∈ Word 𝑉)
4 ccatcl 14473 . . . . 5 ((𝑃 ∈ Word 𝑉 ∧ ⟨“(𝑃‘0)”⟩ ∈ Word 𝑉) → (𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ Word 𝑉)
53, 4syldan 591 . . . 4 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ Word 𝑉)
653adant1 1130 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ Word 𝑉)
7 lencl 14432 . . . . . . . 8 (𝑃 ∈ Word 𝑉 → (♯‘𝑃) ∈ ℕ0)
8 1e2m1 12239 . . . . . . . . . 10 1 = (2 − 1)
98breq1i 5096 . . . . . . . . 9 (1 ≤ (♯‘𝑃) ↔ (2 − 1) ≤ (♯‘𝑃))
10 2re 12191 . . . . . . . . . . 11 2 ∈ ℝ
1110a1i 11 . . . . . . . . . 10 ((♯‘𝑃) ∈ ℕ0 → 2 ∈ ℝ)
12 1red 11105 . . . . . . . . . 10 ((♯‘𝑃) ∈ ℕ0 → 1 ∈ ℝ)
13 nn0re 12382 . . . . . . . . . 10 ((♯‘𝑃) ∈ ℕ0 → (♯‘𝑃) ∈ ℝ)
1411, 12, 13lesubaddd 11706 . . . . . . . . 9 ((♯‘𝑃) ∈ ℕ0 → ((2 − 1) ≤ (♯‘𝑃) ↔ 2 ≤ ((♯‘𝑃) + 1)))
159, 14bitrid 283 . . . . . . . 8 ((♯‘𝑃) ∈ ℕ0 → (1 ≤ (♯‘𝑃) ↔ 2 ≤ ((♯‘𝑃) + 1)))
167, 15syl 17 . . . . . . 7 (𝑃 ∈ Word 𝑉 → (1 ≤ (♯‘𝑃) ↔ 2 ≤ ((♯‘𝑃) + 1)))
1716biimpa 476 . . . . . 6 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 2 ≤ ((♯‘𝑃) + 1))
18 s1len 14506 . . . . . . 7 (♯‘⟨“(𝑃‘0)”⟩) = 1
1918oveq2i 7352 . . . . . 6 ((♯‘𝑃) + (♯‘⟨“(𝑃‘0)”⟩)) = ((♯‘𝑃) + 1)
2017, 19breqtrrdi 5131 . . . . 5 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 2 ≤ ((♯‘𝑃) + (♯‘⟨“(𝑃‘0)”⟩)))
21 ccatlen 14474 . . . . . 6 ((𝑃 ∈ Word 𝑉 ∧ ⟨“(𝑃‘0)”⟩ ∈ Word 𝑉) → (♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((♯‘𝑃) + (♯‘⟨“(𝑃‘0)”⟩)))
223, 21syldan 591 . . . . 5 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((♯‘𝑃) + (♯‘⟨“(𝑃‘0)”⟩)))
2320, 22breqtrrd 5117 . . . 4 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 2 ≤ (♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)))
24233adant1 1130 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 2 ≤ (♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)))
25 clwlkclwwlk.v . . . 4 𝑉 = (Vtx‘𝐺)
26 clwlkclwwlk.e . . . 4 𝐸 = (iEdg‘𝐺)
2725, 26clwlkclwwlk 29972 . . 3 ((𝐺 ∈ USPGraph ∧ (𝑃 ++ ⟨“(𝑃‘0)”⟩) ∈ Word 𝑉 ∧ 2 ≤ (♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩))) → (∃𝑓 𝑓(ClWalks‘𝐺)(𝑃 ++ ⟨“(𝑃‘0)”⟩) ↔ ((lastS‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘0) ∧ ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)) ∈ (ClWWalks‘𝐺))))
281, 6, 24, 27syl3anc 1373 . 2 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (∃𝑓 𝑓(ClWalks‘𝐺)(𝑃 ++ ⟨“(𝑃‘0)”⟩) ↔ ((lastS‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘0) ∧ ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)) ∈ (ClWWalks‘𝐺))))
29 wrdlenccats1lenm1 14522 . . . . . . . 8 (𝑃 ∈ Word 𝑉 → ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1) = (♯‘𝑃))
3029oveq2d 7357 . . . . . . 7 (𝑃 ∈ Word 𝑉 → ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix (♯‘𝑃)))
3130adantr 480 . . . . . 6 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix (♯‘𝑃)))
32 simpl 482 . . . . . . 7 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 𝑃 ∈ Word 𝑉)
33 eqidd 2731 . . . . . . 7 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (♯‘𝑃) = (♯‘𝑃))
34 pfxccatid 14640 . . . . . . 7 ((𝑃 ∈ Word 𝑉 ∧ ⟨“(𝑃‘0)”⟩ ∈ Word 𝑉 ∧ (♯‘𝑃) = (♯‘𝑃)) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix (♯‘𝑃)) = 𝑃)
3532, 3, 33, 34syl3anc 1373 . . . . . 6 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix (♯‘𝑃)) = 𝑃)
3631, 35eqtr2d 2766 . . . . 5 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 𝑃 = ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)))
3736eleq1d 2814 . . . 4 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (𝑃 ∈ (ClWWalks‘𝐺) ↔ ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)) ∈ (ClWWalks‘𝐺)))
38 lswccats1fst 14535 . . . . 5 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (lastS‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘0))
3938biantrurd 532 . . . 4 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)) ∈ (ClWWalks‘𝐺) ↔ ((lastS‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘0) ∧ ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)) ∈ (ClWWalks‘𝐺))))
4037, 39bitr2d 280 . . 3 ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (((lastS‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘0) ∧ ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)) ∈ (ClWWalks‘𝐺)) ↔ 𝑃 ∈ (ClWWalks‘𝐺)))
41403adant1 1130 . 2 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (((lastS‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) = ((𝑃 ++ ⟨“(𝑃‘0)”⟩)‘0) ∧ ((𝑃 ++ ⟨“(𝑃‘0)”⟩) prefix ((♯‘(𝑃 ++ ⟨“(𝑃‘0)”⟩)) − 1)) ∈ (ClWWalks‘𝐺)) ↔ 𝑃 ∈ (ClWWalks‘𝐺)))
4228, 41bitrd 279 1 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (∃𝑓 𝑓(ClWalks‘𝐺)(𝑃 ++ ⟨“(𝑃‘0)”⟩) ↔ 𝑃 ∈ (ClWWalks‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2110   class class class wbr 5089  cfv 6477  (class class class)co 7341  cr 10997  0cc0 10998  1c1 10999   + caddc 11001  cle 11139  cmin 11336  2c2 12172  0cn0 12373  chash 14229  Word cword 14412  lastSclsw 14461   ++ cconcat 14469  ⟨“cs1 14495   prefix cpfx 14570  Vtxcvtx 28967  iEdgciedg 28968  USPGraphcuspgr 29119  ClWalkscclwlks 29741  ClWWalkscclwwlk 29951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-er 8617  df-map 8747  df-pm 8748  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-dju 9786  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-n0 12374  df-xnn0 12447  df-z 12461  df-uz 12725  df-rp 12883  df-fz 13400  df-fzo 13547  df-hash 14230  df-word 14413  df-lsw 14462  df-concat 14470  df-s1 14496  df-substr 14541  df-pfx 14571  df-edg 29019  df-uhgr 29029  df-upgr 29053  df-uspgr 29121  df-wlks 29571  df-clwlks 29742  df-clwwlk 29952
This theorem is referenced by:  clwlkclwwlkfo  29979
  Copyright terms: Public domain W3C validator