Proof of Theorem clwlkclwwlk2
Step | Hyp | Ref
| Expression |
1 | | simp1 1134 |
. . 3
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 𝐺 ∈ USPGraph) |
2 | | wrdsymb1 14237 |
. . . . . 6
⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (𝑃‘0) ∈ 𝑉) |
3 | 2 | s1cld 14289 |
. . . . 5
⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 〈“(𝑃‘0)”〉 ∈
Word 𝑉) |
4 | | ccatcl 14258 |
. . . . 5
⊢ ((𝑃 ∈ Word 𝑉 ∧ 〈“(𝑃‘0)”〉 ∈ Word 𝑉) → (𝑃 ++ 〈“(𝑃‘0)”〉) ∈ Word 𝑉) |
5 | 3, 4 | syldan 590 |
. . . 4
⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (𝑃 ++ 〈“(𝑃‘0)”〉) ∈ Word 𝑉) |
6 | 5 | 3adant1 1128 |
. . 3
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (𝑃 ++ 〈“(𝑃‘0)”〉) ∈ Word 𝑉) |
7 | | lencl 14217 |
. . . . . . . 8
⊢ (𝑃 ∈ Word 𝑉 → (♯‘𝑃) ∈
ℕ0) |
8 | | 1e2m1 12083 |
. . . . . . . . . 10
⊢ 1 = (2
− 1) |
9 | 8 | breq1i 5085 |
. . . . . . . . 9
⊢ (1 ≤
(♯‘𝑃) ↔ (2
− 1) ≤ (♯‘𝑃)) |
10 | | 2re 12030 |
. . . . . . . . . . 11
⊢ 2 ∈
ℝ |
11 | 10 | a1i 11 |
. . . . . . . . . 10
⊢
((♯‘𝑃)
∈ ℕ0 → 2 ∈ ℝ) |
12 | | 1red 10960 |
. . . . . . . . . 10
⊢
((♯‘𝑃)
∈ ℕ0 → 1 ∈ ℝ) |
13 | | nn0re 12225 |
. . . . . . . . . 10
⊢
((♯‘𝑃)
∈ ℕ0 → (♯‘𝑃) ∈ ℝ) |
14 | 11, 12, 13 | lesubaddd 11555 |
. . . . . . . . 9
⊢
((♯‘𝑃)
∈ ℕ0 → ((2 − 1) ≤ (♯‘𝑃) ↔ 2 ≤
((♯‘𝑃) +
1))) |
15 | 9, 14 | syl5bb 282 |
. . . . . . . 8
⊢
((♯‘𝑃)
∈ ℕ0 → (1 ≤ (♯‘𝑃) ↔ 2 ≤ ((♯‘𝑃) + 1))) |
16 | 7, 15 | syl 17 |
. . . . . . 7
⊢ (𝑃 ∈ Word 𝑉 → (1 ≤ (♯‘𝑃) ↔ 2 ≤
((♯‘𝑃) +
1))) |
17 | 16 | biimpa 476 |
. . . . . 6
⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 2 ≤
((♯‘𝑃) +
1)) |
18 | | s1len 14292 |
. . . . . . 7
⊢
(♯‘〈“(𝑃‘0)”〉) = 1 |
19 | 18 | oveq2i 7279 |
. . . . . 6
⊢
((♯‘𝑃) +
(♯‘〈“(𝑃‘0)”〉)) =
((♯‘𝑃) +
1) |
20 | 17, 19 | breqtrrdi 5120 |
. . . . 5
⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 2 ≤
((♯‘𝑃) +
(♯‘〈“(𝑃‘0)”〉))) |
21 | | ccatlen 14259 |
. . . . . 6
⊢ ((𝑃 ∈ Word 𝑉 ∧ 〈“(𝑃‘0)”〉 ∈ Word 𝑉) → (♯‘(𝑃 ++ 〈“(𝑃‘0)”〉)) =
((♯‘𝑃) +
(♯‘〈“(𝑃‘0)”〉))) |
22 | 3, 21 | syldan 590 |
. . . . 5
⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (♯‘(𝑃 ++ 〈“(𝑃‘0)”〉)) =
((♯‘𝑃) +
(♯‘〈“(𝑃‘0)”〉))) |
23 | 20, 22 | breqtrrd 5106 |
. . . 4
⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 2 ≤
(♯‘(𝑃 ++
〈“(𝑃‘0)”〉))) |
24 | 23 | 3adant1 1128 |
. . 3
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 2 ≤
(♯‘(𝑃 ++
〈“(𝑃‘0)”〉))) |
25 | | clwlkclwwlk.v |
. . . 4
⊢ 𝑉 = (Vtx‘𝐺) |
26 | | clwlkclwwlk.e |
. . . 4
⊢ 𝐸 = (iEdg‘𝐺) |
27 | 25, 26 | clwlkclwwlk 28345 |
. . 3
⊢ ((𝐺 ∈ USPGraph ∧ (𝑃 ++ 〈“(𝑃‘0)”〉) ∈
Word 𝑉 ∧ 2 ≤
(♯‘(𝑃 ++
〈“(𝑃‘0)”〉))) →
(∃𝑓 𝑓(ClWalks‘𝐺)(𝑃 ++ 〈“(𝑃‘0)”〉) ↔
((lastS‘(𝑃 ++
〈“(𝑃‘0)”〉)) = ((𝑃 ++ 〈“(𝑃‘0)”〉)‘0)
∧ ((𝑃 ++
〈“(𝑃‘0)”〉) prefix
((♯‘(𝑃 ++
〈“(𝑃‘0)”〉)) − 1)) ∈
(ClWWalks‘𝐺)))) |
28 | 1, 6, 24, 27 | syl3anc 1369 |
. 2
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (∃𝑓 𝑓(ClWalks‘𝐺)(𝑃 ++ 〈“(𝑃‘0)”〉) ↔
((lastS‘(𝑃 ++
〈“(𝑃‘0)”〉)) = ((𝑃 ++ 〈“(𝑃‘0)”〉)‘0)
∧ ((𝑃 ++
〈“(𝑃‘0)”〉) prefix
((♯‘(𝑃 ++
〈“(𝑃‘0)”〉)) − 1)) ∈
(ClWWalks‘𝐺)))) |
29 | | wrdlenccats1lenm1 14308 |
. . . . . . . 8
⊢ (𝑃 ∈ Word 𝑉 → ((♯‘(𝑃 ++ 〈“(𝑃‘0)”〉)) − 1) =
(♯‘𝑃)) |
30 | 29 | oveq2d 7284 |
. . . . . . 7
⊢ (𝑃 ∈ Word 𝑉 → ((𝑃 ++ 〈“(𝑃‘0)”〉) prefix
((♯‘(𝑃 ++
〈“(𝑃‘0)”〉)) − 1)) =
((𝑃 ++ 〈“(𝑃‘0)”〉) prefix
(♯‘𝑃))) |
31 | 30 | adantr 480 |
. . . . . 6
⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → ((𝑃 ++ 〈“(𝑃‘0)”〉) prefix
((♯‘(𝑃 ++
〈“(𝑃‘0)”〉)) − 1)) =
((𝑃 ++ 〈“(𝑃‘0)”〉) prefix
(♯‘𝑃))) |
32 | | simpl 482 |
. . . . . . 7
⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 𝑃 ∈ Word 𝑉) |
33 | | eqidd 2740 |
. . . . . . 7
⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (♯‘𝑃) = (♯‘𝑃)) |
34 | | pfxccatid 14435 |
. . . . . . 7
⊢ ((𝑃 ∈ Word 𝑉 ∧ 〈“(𝑃‘0)”〉 ∈ Word 𝑉 ∧ (♯‘𝑃) = (♯‘𝑃)) → ((𝑃 ++ 〈“(𝑃‘0)”〉) prefix
(♯‘𝑃)) = 𝑃) |
35 | 32, 3, 33, 34 | syl3anc 1369 |
. . . . . 6
⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → ((𝑃 ++ 〈“(𝑃‘0)”〉) prefix
(♯‘𝑃)) = 𝑃) |
36 | 31, 35 | eqtr2d 2780 |
. . . . 5
⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → 𝑃 = ((𝑃 ++ 〈“(𝑃‘0)”〉) prefix
((♯‘(𝑃 ++
〈“(𝑃‘0)”〉)) −
1))) |
37 | 36 | eleq1d 2824 |
. . . 4
⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (𝑃 ∈ (ClWWalks‘𝐺) ↔ ((𝑃 ++ 〈“(𝑃‘0)”〉) prefix
((♯‘(𝑃 ++
〈“(𝑃‘0)”〉)) − 1)) ∈
(ClWWalks‘𝐺))) |
38 | | lswccats1fst 14326 |
. . . . 5
⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (lastS‘(𝑃 ++ 〈“(𝑃‘0)”〉)) =
((𝑃 ++ 〈“(𝑃‘0)”〉)‘0)) |
39 | 38 | biantrurd 532 |
. . . 4
⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (((𝑃 ++ 〈“(𝑃‘0)”〉) prefix
((♯‘(𝑃 ++
〈“(𝑃‘0)”〉)) − 1)) ∈
(ClWWalks‘𝐺) ↔
((lastS‘(𝑃 ++
〈“(𝑃‘0)”〉)) = ((𝑃 ++ 〈“(𝑃‘0)”〉)‘0)
∧ ((𝑃 ++
〈“(𝑃‘0)”〉) prefix
((♯‘(𝑃 ++
〈“(𝑃‘0)”〉)) − 1)) ∈
(ClWWalks‘𝐺)))) |
40 | 37, 39 | bitr2d 279 |
. . 3
⊢ ((𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (((lastS‘(𝑃 ++ 〈“(𝑃‘0)”〉)) =
((𝑃 ++ 〈“(𝑃‘0)”〉)‘0)
∧ ((𝑃 ++
〈“(𝑃‘0)”〉) prefix
((♯‘(𝑃 ++
〈“(𝑃‘0)”〉)) − 1)) ∈
(ClWWalks‘𝐺)) ↔
𝑃 ∈
(ClWWalks‘𝐺))) |
41 | 40 | 3adant1 1128 |
. 2
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (((lastS‘(𝑃 ++ 〈“(𝑃‘0)”〉)) =
((𝑃 ++ 〈“(𝑃‘0)”〉)‘0)
∧ ((𝑃 ++
〈“(𝑃‘0)”〉) prefix
((♯‘(𝑃 ++
〈“(𝑃‘0)”〉)) − 1)) ∈
(ClWWalks‘𝐺)) ↔
𝑃 ∈
(ClWWalks‘𝐺))) |
42 | 28, 41 | bitrd 278 |
1
⊢ ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ Word 𝑉 ∧ 1 ≤ (♯‘𝑃)) → (∃𝑓 𝑓(ClWalks‘𝐺)(𝑃 ++ 〈“(𝑃‘0)”〉) ↔ 𝑃 ∈ (ClWWalks‘𝐺))) |