MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addgt0d Structured version   Visualization version   GIF version

Theorem addgt0d 11790
Description: Addition of 2 positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
leidd.1 (𝜑𝐴 ∈ ℝ)
ltnegd.2 (𝜑𝐵 ∈ ℝ)
addgt0d.3 (𝜑 → 0 < 𝐴)
addgt0d.4 (𝜑 → 0 < 𝐵)
Assertion
Ref Expression
addgt0d (𝜑 → 0 < (𝐴 + 𝐵))

Proof of Theorem addgt0d
StepHypRef Expression
1 leidd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ltnegd.2 . 2 (𝜑𝐵 ∈ ℝ)
3 0red 11218 . . 3 (𝜑 → 0 ∈ ℝ)
4 addgt0d.3 . . 3 (𝜑 → 0 < 𝐴)
53, 1, 4ltled 11363 . 2 (𝜑 → 0 ≤ 𝐴)
6 addgt0d.4 . 2 (𝜑 → 0 < 𝐵)
71, 2, 5, 6addgegt0d 11788 1 (𝜑 → 0 < (𝐴 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098   class class class wbr 5141  (class class class)co 7404  cr 11108  0cc0 11109   + caddc 11112   < clt 11249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7407  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255
This theorem is referenced by:  nnne0  12247  bpoly4  16006  tanhlt1  16107  nnoddm1d2  16333  pythagtriplem11  16764  pythagtriplem12  16765  pythagtriplem13  16766  pythagtriplem14  16767  pythagtriplem16  16769  prmgaplem7  16996  asinsin  26774  gausslemma2dlem1a  27248  clwwlkf1  29806  dffltz  41936  pellexlem2  42128  radcnvrat  43631  stirlinglem15  45358  fourierdlem79  45455
  Copyright terms: Public domain W3C validator