MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addgt0d Structured version   Visualization version   GIF version

Theorem addgt0d 11785
Description: Addition of 2 positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
leidd.1 (𝜑𝐴 ∈ ℝ)
ltnegd.2 (𝜑𝐵 ∈ ℝ)
addgt0d.3 (𝜑 → 0 < 𝐴)
addgt0d.4 (𝜑 → 0 < 𝐵)
Assertion
Ref Expression
addgt0d (𝜑 → 0 < (𝐴 + 𝐵))

Proof of Theorem addgt0d
StepHypRef Expression
1 leidd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ltnegd.2 . 2 (𝜑𝐵 ∈ ℝ)
3 0red 11213 . . 3 (𝜑 → 0 ∈ ℝ)
4 addgt0d.3 . . 3 (𝜑 → 0 < 𝐴)
53, 1, 4ltled 11358 . 2 (𝜑 → 0 ≤ 𝐴)
6 addgt0d.4 . 2 (𝜑 → 0 < 𝐵)
71, 2, 5, 6addgegt0d 11783 1 (𝜑 → 0 < (𝐴 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106   class class class wbr 5147  (class class class)co 7405  cr 11105  0cc0 11106   + caddc 11109   < clt 11244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250
This theorem is referenced by:  nnne0  12242  bpoly4  15999  tanhlt1  16099  nnoddm1d2  16325  pythagtriplem11  16754  pythagtriplem12  16755  pythagtriplem13  16756  pythagtriplem14  16757  pythagtriplem16  16759  prmgaplem7  16986  asinsin  26386  gausslemma2dlem1a  26857  clwwlkf1  29291  dffltz  41372  pellexlem2  41553  radcnvrat  43058  stirlinglem15  44790  fourierdlem79  44887
  Copyright terms: Public domain W3C validator