| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addgt0d | Structured version Visualization version GIF version | ||
| Description: Addition of 2 positive numbers is positive. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| addgt0d.3 | ⊢ (𝜑 → 0 < 𝐴) |
| addgt0d.4 | ⊢ (𝜑 → 0 < 𝐵) |
| Ref | Expression |
|---|---|
| addgt0d | ⊢ (𝜑 → 0 < (𝐴 + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | ltnegd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | 0red 11246 | . . 3 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 4 | addgt0d.3 | . . 3 ⊢ (𝜑 → 0 < 𝐴) | |
| 5 | 3, 1, 4 | ltled 11391 | . 2 ⊢ (𝜑 → 0 ≤ 𝐴) |
| 6 | addgt0d.4 | . 2 ⊢ (𝜑 → 0 < 𝐵) | |
| 7 | 1, 2, 5, 6 | addgegt0d 11818 | 1 ⊢ (𝜑 → 0 < (𝐴 + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 class class class wbr 5123 (class class class)co 7413 ℝcr 11136 0cc0 11137 + caddc 11140 < clt 11277 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-po 5572 df-so 5573 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 |
| This theorem is referenced by: nnne0 12282 bpoly4 16077 tanhlt1 16178 nnoddm1d2 16405 pythagtriplem11 16845 pythagtriplem12 16846 pythagtriplem13 16847 pythagtriplem14 16848 pythagtriplem16 16850 prmgaplem7 17077 asinsin 26871 gausslemma2dlem1a 27345 clwwlkf1 29996 dffltz 42607 pellexlem2 42804 radcnvrat 44290 stirlinglem15 46060 fourierdlem79 46157 |
| Copyright terms: Public domain | W3C validator |