MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pythagtriplem11 Structured version   Visualization version   GIF version

Theorem pythagtriplem11 16697
Description: Lemma for pythagtrip 16706. Show that 𝑀 (which will eventually be closely related to the 𝑚 in the final statement) is a natural. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypothesis
Ref Expression
pythagtriplem11.1 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)
Assertion
Ref Expression
pythagtriplem11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝑀 ∈ ℕ)

Proof of Theorem pythagtriplem11
StepHypRef Expression
1 pythagtriplem11.1 . 2 𝑀 = (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)
2 pythagtriplem9 16696 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 + 𝐵)) ∈ ℕ)
32nnzd 12526 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 + 𝐵)) ∈ ℤ)
4 simp3r 1202 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ¬ 2 ∥ 𝐴)
5 2z 12535 . . . . . . . . . 10 2 ∈ ℤ
6 nnz 12520 . . . . . . . . . . . . 13 (𝐶 ∈ ℕ → 𝐶 ∈ ℤ)
763ad2ant3 1135 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈ ℤ)
8 nnz 12520 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
983ad2ant2 1134 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈ ℤ)
107, 9zaddcld 12611 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℤ)
11103ad2ant1 1133 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐵) ∈ ℤ)
12 nnz 12520 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
13123ad2ant1 1133 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐴 ∈ ℤ)
14133ad2ant1 1133 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 ∈ ℤ)
15 dvdsgcdb 16426 . . . . . . . . . 10 ((2 ∈ ℤ ∧ (𝐶 + 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((2 ∥ (𝐶 + 𝐵) ∧ 2 ∥ 𝐴) ↔ 2 ∥ ((𝐶 + 𝐵) gcd 𝐴)))
165, 11, 14, 15mp3an2i 1466 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((2 ∥ (𝐶 + 𝐵) ∧ 2 ∥ 𝐴) ↔ 2 ∥ ((𝐶 + 𝐵) gcd 𝐴)))
1716biimpar 478 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 2 ∥ ((𝐶 + 𝐵) gcd 𝐴)) → (2 ∥ (𝐶 + 𝐵) ∧ 2 ∥ 𝐴))
1817simprd 496 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 2 ∥ ((𝐶 + 𝐵) gcd 𝐴)) → 2 ∥ 𝐴)
194, 18mtand 814 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ¬ 2 ∥ ((𝐶 + 𝐵) gcd 𝐴))
20 pythagtriplem7 16694 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 + 𝐵)) = ((𝐶 + 𝐵) gcd 𝐴))
2120breq2d 5117 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 ∥ (√‘(𝐶 + 𝐵)) ↔ 2 ∥ ((𝐶 + 𝐵) gcd 𝐴)))
2219, 21mtbird 324 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ¬ 2 ∥ (√‘(𝐶 + 𝐵)))
23 pythagtriplem8 16695 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶𝐵)) ∈ ℕ)
2423nnzd 12526 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶𝐵)) ∈ ℤ)
257, 9zsubcld 12612 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶𝐵) ∈ ℤ)
26253ad2ant1 1133 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶𝐵) ∈ ℤ)
27 dvdsgcdb 16426 . . . . . . . . . 10 ((2 ∈ ℤ ∧ (𝐶𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((2 ∥ (𝐶𝐵) ∧ 2 ∥ 𝐴) ↔ 2 ∥ ((𝐶𝐵) gcd 𝐴)))
285, 26, 14, 27mp3an2i 1466 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((2 ∥ (𝐶𝐵) ∧ 2 ∥ 𝐴) ↔ 2 ∥ ((𝐶𝐵) gcd 𝐴)))
2928biimpar 478 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 2 ∥ ((𝐶𝐵) gcd 𝐴)) → (2 ∥ (𝐶𝐵) ∧ 2 ∥ 𝐴))
3029simprd 496 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 2 ∥ ((𝐶𝐵) gcd 𝐴)) → 2 ∥ 𝐴)
314, 30mtand 814 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ¬ 2 ∥ ((𝐶𝐵) gcd 𝐴))
32 pythagtriplem6 16693 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶𝐵)) = ((𝐶𝐵) gcd 𝐴))
3332breq2d 5117 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 ∥ (√‘(𝐶𝐵)) ↔ 2 ∥ ((𝐶𝐵) gcd 𝐴)))
3431, 33mtbird 324 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ¬ 2 ∥ (√‘(𝐶𝐵)))
35 opoe 16245 . . . . 5 ((((√‘(𝐶 + 𝐵)) ∈ ℤ ∧ ¬ 2 ∥ (√‘(𝐶 + 𝐵))) ∧ ((√‘(𝐶𝐵)) ∈ ℤ ∧ ¬ 2 ∥ (√‘(𝐶𝐵)))) → 2 ∥ ((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))))
363, 22, 24, 34, 35syl22anc 837 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 2 ∥ ((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))))
372, 23nnaddcld 12205 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) ∈ ℕ)
3837nnzd 12526 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) ∈ ℤ)
39 evend2 16239 . . . . 5 (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) ∈ ℤ → (2 ∥ ((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) ↔ (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) ∈ ℤ))
4038, 39syl 17 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 ∥ ((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) ↔ (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) ∈ ℤ))
4136, 40mpbid 231 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) ∈ ℤ)
422nnred 12168 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 + 𝐵)) ∈ ℝ)
4323nnred 12168 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶𝐵)) ∈ ℝ)
442nngt0d 12202 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 < (√‘(𝐶 + 𝐵)))
4523nngt0d 12202 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 < (√‘(𝐶𝐵)))
4642, 43, 44, 45addgt0d 11730 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 < ((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))))
4737nnred 12168 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) ∈ ℝ)
48 halfpos2 12382 . . . . 5 (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) ∈ ℝ → (0 < ((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) ↔ 0 < (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)))
4947, 48syl 17 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (0 < ((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) ↔ 0 < (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)))
5046, 49mpbid 231 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 < (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2))
51 elnnz 12509 . . 3 ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) ∈ ℕ ↔ ((((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) ∈ ℤ ∧ 0 < (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2)))
5241, 50, 51sylanbrc 583 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((√‘(𝐶 + 𝐵)) + (√‘(𝐶𝐵))) / 2) ∈ ℕ)
531, 52eqeltrid 2842 1 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝑀 ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106   class class class wbr 5105  cfv 6496  (class class class)co 7357  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   < clt 11189  cmin 11385   / cdiv 11812  cn 12153  2c2 12208  cz 12499  cexp 13967  csqrt 15118  cdvds 16136   gcd cgcd 16374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-dvds 16137  df-gcd 16375  df-prm 16548
This theorem is referenced by:  pythagtriplem18  16704  flt4lem5  40974  flt4lem5a  40976  flt4lem5c  40978  flt4lem5d  40979  flt4lem5e  40980
  Copyright terms: Public domain W3C validator