| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addge0d | Structured version Visualization version GIF version | ||
| Description: Addition of 2 nonnegative numbers is nonnegative. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| addge0d.3 | ⊢ (𝜑 → 0 ≤ 𝐴) |
| addge0d.4 | ⊢ (𝜑 → 0 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| addge0d | ⊢ (𝜑 → 0 ≤ (𝐴 + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | ltnegd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | addge0d.3 | . 2 ⊢ (𝜑 → 0 ≤ 𝐴) | |
| 4 | addge0d.4 | . 2 ⊢ (𝜑 → 0 ≤ 𝐵) | |
| 5 | addge0 11731 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 + 𝐵)) | |
| 6 | 1, 2, 3, 4, 5 | syl22anc 838 | 1 ⊢ (𝜑 → 0 ≤ (𝐴 + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5124 (class class class)co 7410 ℝcr 11133 0cc0 11134 + caddc 11137 ≤ cle 11275 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-po 5566 df-so 5567 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 |
| This theorem is referenced by: fldiv 13882 modaddmodlo 13958 cjmulge0 15170 absrele 15332 abstri 15354 nn0oddm1d2 16409 prdsxmetlem 24312 nmotri 24683 tcphcphlem1 25192 trirn 25357 minveclem4 25389 ibladdlem 25778 itgaddlem1 25781 itgaddlem2 25782 iblabs 25787 cxpaddle 26719 asinlem3a 26837 fsumharmonic 26979 lgamgulmlem3 26998 mulog2sumlem2 27503 selbergb 27517 selberg2b 27520 pntrlog2bndlem2 27546 pntrlog2bnd 27552 abvcxp 27583 smcnlem 30683 minvecolem4 30866 fsumrp0cl 33021 sqsscirc1 33944 omssubaddlem 34336 dnibndlem9 36509 itg2addnc 37703 ibladdnclem 37705 itgaddnclem1 37707 itgaddnclem2 37708 iblabsnc 37713 iblmulc2nc 37714 ftc1anclem4 37725 ftc1anclem7 37728 ftc1anc 37730 areacirc 37742 lcmineqlem18 42064 posbezout 42118 aks6d1c1 42134 2np3bcnp1 42162 rmxypos 42938 wallispi2lem1 46067 fourierdlem15 46118 fourierdlem30 46133 fourierdlem47 46149 sge0xaddlem2 46430 hoidmvlelem2 46592 hoidmvlelem4 46594 ovolval5lem1 46648 ormkglobd 46871 flsqrt 47574 nn0eo 48475 2sphere 48696 itscnhlinecirc02plem3 48731 |
| Copyright terms: Public domain | W3C validator |