Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > addge0d | Structured version Visualization version GIF version |
Description: Addition of 2 nonnegative numbers is nonnegative. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
addge0d.3 | ⊢ (𝜑 → 0 ≤ 𝐴) |
addge0d.4 | ⊢ (𝜑 → 0 ≤ 𝐵) |
Ref | Expression |
---|---|
addge0d | ⊢ (𝜑 → 0 ≤ (𝐴 + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | ltnegd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | addge0d.3 | . 2 ⊢ (𝜑 → 0 ≤ 𝐴) | |
4 | addge0d.4 | . 2 ⊢ (𝜑 → 0 ≤ 𝐵) | |
5 | addge0 11492 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 + 𝐵)) | |
6 | 1, 2, 3, 4, 5 | syl22anc 835 | 1 ⊢ (𝜑 → 0 ≤ (𝐴 + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2101 class class class wbr 5077 (class class class)co 7295 ℝcr 10898 0cc0 10899 + caddc 10902 ≤ cle 11038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 ax-resscn 10956 ax-1cn 10957 ax-icn 10958 ax-addcl 10959 ax-addrcl 10960 ax-mulcl 10961 ax-mulrcl 10962 ax-mulcom 10963 ax-addass 10964 ax-mulass 10965 ax-distr 10966 ax-i2m1 10967 ax-1ne0 10968 ax-1rid 10969 ax-rnegex 10970 ax-rrecex 10971 ax-cnre 10972 ax-pre-lttri 10973 ax-pre-lttrn 10974 ax-pre-ltadd 10975 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-br 5078 df-opab 5140 df-mpt 5161 df-id 5491 df-po 5505 df-so 5506 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-ov 7298 df-er 8518 df-en 8754 df-dom 8755 df-sdom 8756 df-pnf 11039 df-mnf 11040 df-xr 11041 df-ltxr 11042 df-le 11043 |
This theorem is referenced by: fldiv 13608 modaddmodlo 13683 cjmulge0 14885 absrele 15048 abstri 15070 nn0oddm1d2 16122 prdsxmetlem 23549 nmotri 23931 tcphcphlem1 24427 trirn 24592 minveclem4 24624 ibladdlem 25012 itgaddlem1 25015 itgaddlem2 25016 iblabs 25021 cxpaddle 25933 asinlem3a 26048 fsumharmonic 26189 lgamgulmlem3 26208 mulog2sumlem2 26711 selbergb 26725 selberg2b 26728 pntrlog2bndlem2 26754 pntrlog2bnd 26760 abvcxp 26791 smcnlem 29087 minvecolem4 29270 fsumrp0cl 31332 sqsscirc1 31886 omssubaddlem 32294 dnibndlem9 34694 itg2addnc 35859 ibladdnclem 35861 itgaddnclem1 35863 itgaddnclem2 35864 iblabsnc 35869 iblmulc2nc 35870 ftc1anclem4 35881 ftc1anclem7 35884 ftc1anc 35886 areacirc 35898 lcmineqlem18 40080 2np3bcnp1 40126 rmxypos 40793 wallispi2lem1 43647 fourierdlem15 43698 fourierdlem30 43713 fourierdlem47 43729 sge0xaddlem2 44008 hoidmvlelem2 44170 hoidmvlelem4 44172 ovolval5lem1 44226 flsqrt 45085 nn0eo 45914 2sphere 46135 itscnhlinecirc02plem3 46170 |
Copyright terms: Public domain | W3C validator |