Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2107
class class class wbr 5149 (class class class)co 7409
ℝcr 11109 0cc0 11110
+ caddc 11113 ≤
cle 11249 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 |
This theorem is referenced by: fldiv
13825 modaddmodlo
13900 cjmulge0
15093 absrele
15255 abstri
15277 nn0oddm1d2
16328 prdsxmetlem
23874 nmotri
24256 tcphcphlem1
24752 trirn
24917 minveclem4
24949 ibladdlem
25337 itgaddlem1
25340 itgaddlem2
25341 iblabs
25346 cxpaddle
26260 asinlem3a
26375 fsumharmonic
26516 lgamgulmlem3
26535 mulog2sumlem2
27038 selbergb
27052 selberg2b
27055 pntrlog2bndlem2
27081 pntrlog2bnd
27087 abvcxp
27118 smcnlem
29950 minvecolem4
30133 fsumrp0cl
32196 sqsscirc1
32888 omssubaddlem
33298 dnibndlem9
35362 itg2addnc
36542 ibladdnclem
36544 itgaddnclem1
36546 itgaddnclem2
36547 iblabsnc
36552 iblmulc2nc
36553 ftc1anclem4
36564 ftc1anclem7
36567 ftc1anc
36569 areacirc
36581 lcmineqlem18
40911 2np3bcnp1
40960 rmxypos
41686 wallispi2lem1
44787 fourierdlem15
44838 fourierdlem30
44853 fourierdlem47
44869 sge0xaddlem2
45150 hoidmvlelem2
45312 hoidmvlelem4
45314 ovolval5lem1
45368 flsqrt
46261 nn0eo
47214 2sphere
47435 itscnhlinecirc02plem3
47470 |