MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addge0d Structured version   Visualization version   GIF version

Theorem addge0d 11794
Description: Addition of 2 nonnegative numbers is nonnegative. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
leidd.1 (𝜑𝐴 ∈ ℝ)
ltnegd.2 (𝜑𝐵 ∈ ℝ)
addge0d.3 (𝜑 → 0 ≤ 𝐴)
addge0d.4 (𝜑 → 0 ≤ 𝐵)
Assertion
Ref Expression
addge0d (𝜑 → 0 ≤ (𝐴 + 𝐵))

Proof of Theorem addge0d
StepHypRef Expression
1 leidd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ltnegd.2 . 2 (𝜑𝐵 ∈ ℝ)
3 addge0d.3 . 2 (𝜑 → 0 ≤ 𝐴)
4 addge0d.4 . 2 (𝜑 → 0 ≤ 𝐵)
5 addge0 11707 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 + 𝐵))
61, 2, 3, 4, 5syl22anc 837 1 (𝜑 → 0 ≤ (𝐴 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106   class class class wbr 5148  (class class class)co 7411  cr 11111  0cc0 11112   + caddc 11115  cle 11253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258
This theorem is referenced by:  fldiv  13829  modaddmodlo  13904  cjmulge0  15097  absrele  15259  abstri  15281  nn0oddm1d2  16332  prdsxmetlem  24094  nmotri  24476  tcphcphlem1  24976  trirn  25141  minveclem4  25173  ibladdlem  25561  itgaddlem1  25564  itgaddlem2  25565  iblabs  25570  cxpaddle  26484  asinlem3a  26599  fsumharmonic  26740  lgamgulmlem3  26759  mulog2sumlem2  27262  selbergb  27276  selberg2b  27279  pntrlog2bndlem2  27305  pntrlog2bnd  27311  abvcxp  27342  smcnlem  30205  minvecolem4  30388  fsumrp0cl  32451  sqsscirc1  33174  omssubaddlem  33584  dnibndlem9  35665  itg2addnc  36845  ibladdnclem  36847  itgaddnclem1  36849  itgaddnclem2  36850  iblabsnc  36855  iblmulc2nc  36856  ftc1anclem4  36867  ftc1anclem7  36870  ftc1anc  36872  areacirc  36884  lcmineqlem18  41217  2np3bcnp1  41266  rmxypos  41988  wallispi2lem1  45086  fourierdlem15  45137  fourierdlem30  45152  fourierdlem47  45168  sge0xaddlem2  45449  hoidmvlelem2  45611  hoidmvlelem4  45613  ovolval5lem1  45667  flsqrt  46560  nn0eo  47302  2sphere  47523  itscnhlinecirc02plem3  47558
  Copyright terms: Public domain W3C validator