MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addge0d Structured version   Visualization version   GIF version

Theorem addge0d 11866
Description: Addition of 2 nonnegative numbers is nonnegative. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
leidd.1 (𝜑𝐴 ∈ ℝ)
ltnegd.2 (𝜑𝐵 ∈ ℝ)
addge0d.3 (𝜑 → 0 ≤ 𝐴)
addge0d.4 (𝜑 → 0 ≤ 𝐵)
Assertion
Ref Expression
addge0d (𝜑 → 0 ≤ (𝐴 + 𝐵))

Proof of Theorem addge0d
StepHypRef Expression
1 leidd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ltnegd.2 . 2 (𝜑𝐵 ∈ ℝ)
3 addge0d.3 . 2 (𝜑 → 0 ≤ 𝐴)
4 addge0d.4 . 2 (𝜑 → 0 ≤ 𝐵)
5 addge0 11779 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 + 𝐵))
61, 2, 3, 4, 5syl22anc 838 1 (𝜑 → 0 ≤ (𝐴 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108   class class class wbr 5166  (class class class)co 7448  cr 11183  0cc0 11184   + caddc 11187  cle 11325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330
This theorem is referenced by:  fldiv  13911  modaddmodlo  13986  cjmulge0  15195  absrele  15357  abstri  15379  nn0oddm1d2  16433  prdsxmetlem  24399  nmotri  24781  tcphcphlem1  25288  trirn  25453  minveclem4  25485  ibladdlem  25875  itgaddlem1  25878  itgaddlem2  25879  iblabs  25884  cxpaddle  26813  asinlem3a  26931  fsumharmonic  27073  lgamgulmlem3  27092  mulog2sumlem2  27597  selbergb  27611  selberg2b  27614  pntrlog2bndlem2  27640  pntrlog2bnd  27646  abvcxp  27677  smcnlem  30729  minvecolem4  30912  fsumrp0cl  33007  sqsscirc1  33854  omssubaddlem  34264  dnibndlem9  36452  itg2addnc  37634  ibladdnclem  37636  itgaddnclem1  37638  itgaddnclem2  37639  iblabsnc  37644  iblmulc2nc  37645  ftc1anclem4  37656  ftc1anclem7  37659  ftc1anc  37661  areacirc  37673  lcmineqlem18  42003  posbezout  42057  aks6d1c1  42073  2np3bcnp1  42101  rmxypos  42904  wallispi2lem1  45992  fourierdlem15  46043  fourierdlem30  46058  fourierdlem47  46074  sge0xaddlem2  46355  hoidmvlelem2  46517  hoidmvlelem4  46519  ovolval5lem1  46573  flsqrt  47467  nn0eo  48262  2sphere  48483  itscnhlinecirc02plem3  48518
  Copyright terms: Public domain W3C validator