| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addge0d | Structured version Visualization version GIF version | ||
| Description: Addition of 2 nonnegative numbers is nonnegative. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| addge0d.3 | ⊢ (𝜑 → 0 ≤ 𝐴) |
| addge0d.4 | ⊢ (𝜑 → 0 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| addge0d | ⊢ (𝜑 → 0 ≤ (𝐴 + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | ltnegd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | addge0d.3 | . 2 ⊢ (𝜑 → 0 ≤ 𝐴) | |
| 4 | addge0d.4 | . 2 ⊢ (𝜑 → 0 ≤ 𝐵) | |
| 5 | addge0 11674 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 + 𝐵)) | |
| 6 | 1, 2, 3, 4, 5 | syl22anc 838 | 1 ⊢ (𝜑 → 0 ≤ (𝐴 + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5110 (class class class)co 7390 ℝcr 11074 0cc0 11075 + caddc 11078 ≤ cle 11216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 |
| This theorem is referenced by: fldiv 13829 modaddmodlo 13907 cjmulge0 15119 absrele 15281 abstri 15304 nn0oddm1d2 16362 prdsxmetlem 24263 nmotri 24634 tcphcphlem1 25142 trirn 25307 minveclem4 25339 ibladdlem 25728 itgaddlem1 25731 itgaddlem2 25732 iblabs 25737 cxpaddle 26669 asinlem3a 26787 fsumharmonic 26929 lgamgulmlem3 26948 mulog2sumlem2 27453 selbergb 27467 selberg2b 27470 pntrlog2bndlem2 27496 pntrlog2bnd 27502 abvcxp 27533 smcnlem 30633 minvecolem4 30816 fsumrp0cl 32969 sqsscirc1 33905 omssubaddlem 34297 dnibndlem9 36481 itg2addnc 37675 ibladdnclem 37677 itgaddnclem1 37679 itgaddnclem2 37680 iblabsnc 37685 iblmulc2nc 37686 ftc1anclem4 37697 ftc1anclem7 37700 ftc1anc 37702 areacirc 37714 lcmineqlem18 42041 posbezout 42095 aks6d1c1 42111 2np3bcnp1 42139 rmxypos 42943 wallispi2lem1 46076 fourierdlem15 46127 fourierdlem30 46142 fourierdlem47 46158 sge0xaddlem2 46439 hoidmvlelem2 46601 hoidmvlelem4 46603 ovolval5lem1 46657 ormkglobd 46880 flsqrt 47598 nn0eo 48521 2sphere 48742 itscnhlinecirc02plem3 48777 |
| Copyright terms: Public domain | W3C validator |