| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addge0d | Structured version Visualization version GIF version | ||
| Description: Addition of 2 nonnegative numbers is nonnegative. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| leidd.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| ltnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| addge0d.3 | ⊢ (𝜑 → 0 ≤ 𝐴) |
| addge0d.4 | ⊢ (𝜑 → 0 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| addge0d | ⊢ (𝜑 → 0 ≤ (𝐴 + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leidd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | ltnegd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | addge0d.3 | . 2 ⊢ (𝜑 → 0 ≤ 𝐴) | |
| 4 | addge0d.4 | . 2 ⊢ (𝜑 → 0 ≤ 𝐵) | |
| 5 | addge0 11603 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 + 𝐵)) | |
| 6 | 1, 2, 3, 4, 5 | syl22anc 838 | 1 ⊢ (𝜑 → 0 ≤ (𝐴 + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 class class class wbr 5091 (class class class)co 7346 ℝcr 11002 0cc0 11003 + caddc 11006 ≤ cle 11144 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 |
| This theorem is referenced by: fldiv 13761 modaddmodlo 13839 cjmulge0 15050 absrele 15212 abstri 15235 nn0oddm1d2 16293 prdsxmetlem 24281 nmotri 24652 tcphcphlem1 25160 trirn 25325 minveclem4 25357 ibladdlem 25746 itgaddlem1 25749 itgaddlem2 25750 iblabs 25755 cxpaddle 26687 asinlem3a 26805 fsumharmonic 26947 lgamgulmlem3 26966 mulog2sumlem2 27471 selbergb 27485 selberg2b 27488 pntrlog2bndlem2 27514 pntrlog2bnd 27520 abvcxp 27551 smcnlem 30672 minvecolem4 30855 fsumrp0cl 32997 sqsscirc1 33916 omssubaddlem 34307 dnibndlem9 36519 itg2addnc 37713 ibladdnclem 37715 itgaddnclem1 37717 itgaddnclem2 37718 iblabsnc 37723 iblmulc2nc 37724 ftc1anclem4 37735 ftc1anclem7 37738 ftc1anc 37740 areacirc 37752 lcmineqlem18 42078 posbezout 42132 aks6d1c1 42148 2np3bcnp1 42176 rmxypos 42979 wallispi2lem1 46108 fourierdlem15 46159 fourierdlem30 46174 fourierdlem47 46190 sge0xaddlem2 46471 hoidmvlelem2 46633 hoidmvlelem4 46635 ovolval5lem1 46689 ormkglobd 46912 flsqrt 47623 nn0eo 48559 2sphere 48780 itscnhlinecirc02plem3 48815 |
| Copyright terms: Public domain | W3C validator |