Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2106
class class class wbr 5148 (class class class)co 7411
ℝcr 11111 0cc0 11112
+ caddc 11115 ≤
cle 11253 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913
ax-6 1971 ax-7 2011 ax-8 2108
ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 |
This theorem depends on definitions:
df-bi 206 df-an 397
df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 |
This theorem is referenced by: fldiv
13829 modaddmodlo
13904 cjmulge0
15097 absrele
15259 abstri
15281 nn0oddm1d2
16332 prdsxmetlem
24094 nmotri
24476 tcphcphlem1
24976 trirn
25141 minveclem4
25173 ibladdlem
25561 itgaddlem1
25564 itgaddlem2
25565 iblabs
25570 cxpaddle
26484 asinlem3a
26599 fsumharmonic
26740 lgamgulmlem3
26759 mulog2sumlem2
27262 selbergb
27276 selberg2b
27279 pntrlog2bndlem2
27305 pntrlog2bnd
27311 abvcxp
27342 smcnlem
30205 minvecolem4
30388 fsumrp0cl
32451 sqsscirc1
33174 omssubaddlem
33584 dnibndlem9
35665 itg2addnc
36845 ibladdnclem
36847 itgaddnclem1
36849 itgaddnclem2
36850 iblabsnc
36855 iblmulc2nc
36856 ftc1anclem4
36867 ftc1anclem7
36870 ftc1anc
36872 areacirc
36884 lcmineqlem18
41217 2np3bcnp1
41266 rmxypos
41988 wallispi2lem1
45086 fourierdlem15
45137 fourierdlem30
45152 fourierdlem47
45168 sge0xaddlem2
45449 hoidmvlelem2
45611 hoidmvlelem4
45613 ovolval5lem1
45667 flsqrt
46560 nn0eo
47302 2sphere
47523 itscnhlinecirc02plem3
47558 |