MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addge0d Structured version   Visualization version   GIF version

Theorem addge0d 10935
Description: Addition of 2 nonnegative numbers is nonnegative. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
leidd.1 (𝜑𝐴 ∈ ℝ)
ltnegd.2 (𝜑𝐵 ∈ ℝ)
addge0d.3 (𝜑 → 0 ≤ 𝐴)
addge0d.4 (𝜑 → 0 ≤ 𝐵)
Assertion
Ref Expression
addge0d (𝜑 → 0 ≤ (𝐴 + 𝐵))

Proof of Theorem addge0d
StepHypRef Expression
1 leidd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ltnegd.2 . 2 (𝜑𝐵 ∈ ℝ)
3 addge0d.3 . 2 (𝜑 → 0 ≤ 𝐴)
4 addge0d.4 . 2 (𝜑 → 0 ≤ 𝐵)
5 addge0 10848 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 + 𝐵))
61, 2, 3, 4, 5syl22anc 872 1 (𝜑 → 0 ≤ (𝐴 + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2164   class class class wbr 4875  (class class class)co 6910  cr 10258  0cc0 10259   + caddc 10262  cle 10399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-po 5265  df-so 5266  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-ov 6913  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404
This theorem is referenced by:  fldiv  12961  modaddmodlo  13036  cjmulge0  14270  absrele  14432  abstri  14454  nn0oddm1d2  15482  prdsxmetlem  22550  nmotri  22920  tcphcphlem1  23410  trirn  23575  minveclem4  23607  ibladdlem  23992  itgaddlem1  23995  itgaddlem2  23996  iblabs  24001  cxpaddle  24902  asinlem3a  25017  fsumharmonic  25158  lgamgulmlem3  25177  mulog2sumlem2  25644  selbergb  25658  selberg2b  25661  pntrlog2bndlem2  25687  pntrlog2bnd  25693  abvcxp  25724  smcnlem  28103  minvecolem4  28287  fsumrp0cl  30236  sqsscirc1  30495  omssubaddlem  30902  dnibndlem9  33004  itg2addnc  34002  ibladdnclem  34004  itgaddnclem1  34006  itgaddnclem2  34007  iblabsnc  34012  iblmulc2nc  34013  ftc1anclem4  34026  ftc1anclem7  34029  ftc1anc  34031  areacirc  34043  rmxypos  38352  wallispi2lem1  41076  fourierdlem15  41127  fourierdlem30  41142  fourierdlem47  41158  sge0xaddlem2  41436  hoidmvlelem2  41598  hoidmvlelem4  41600  ovolval5lem1  41654  flsqrt  42352  nn0eo  43183  2sphere  43311
  Copyright terms: Public domain W3C validator