Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 ∈ wcel 2107
class class class wbr 5106 (class class class)co 7358
ℝcr 11051 0cc0 11052
+ caddc 11055 ≤
cle 11191 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914
ax-6 1972 ax-7 2012 ax-8 2109
ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-resscn 11109 ax-1cn 11110 ax-icn 11111 ax-addcl 11112 ax-addrcl 11113 ax-mulcl 11114 ax-mulrcl 11115 ax-mulcom 11116 ax-addass 11117 ax-mulass 11118 ax-distr 11119 ax-i2m1 11120 ax-1ne0 11121 ax-1rid 11122 ax-rnegex 11123 ax-rrecex 11124 ax-cnre 11125 ax-pre-lttri 11126 ax-pre-lttrn 11127 ax-pre-ltadd 11128 |
This theorem depends on definitions:
df-bi 206 df-an 398
df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-po 5546 df-so 5547 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-ov 7361 df-er 8649 df-en 8885 df-dom 8886 df-sdom 8887 df-pnf 11192 df-mnf 11193 df-xr 11194 df-ltxr 11195 df-le 11196 |
This theorem is referenced by: fldiv
13766 modaddmodlo
13841 cjmulge0
15032 absrele
15194 abstri
15216 nn0oddm1d2
16268 prdsxmetlem
23724 nmotri
24106 tcphcphlem1
24602 trirn
24767 minveclem4
24799 ibladdlem
25187 itgaddlem1
25190 itgaddlem2
25191 iblabs
25196 cxpaddle
26108 asinlem3a
26223 fsumharmonic
26364 lgamgulmlem3
26383 mulog2sumlem2
26886 selbergb
26900 selberg2b
26903 pntrlog2bndlem2
26929 pntrlog2bnd
26935 abvcxp
26966 smcnlem
29642 minvecolem4
29825 fsumrp0cl
31889 sqsscirc1
32492 omssubaddlem
32902 dnibndlem9
34952 itg2addnc
36135 ibladdnclem
36137 itgaddnclem1
36139 itgaddnclem2
36140 iblabsnc
36145 iblmulc2nc
36146 ftc1anclem4
36157 ftc1anclem7
36160 ftc1anc
36162 areacirc
36174 lcmineqlem18
40506 2np3bcnp1
40555 rmxypos
41274 wallispi2lem1
44319 fourierdlem15
44370 fourierdlem30
44385 fourierdlem47
44401 sge0xaddlem2
44682 hoidmvlelem2
44844 hoidmvlelem4
44846 ovolval5lem1
44900 flsqrt
45792 nn0eo
46621 2sphere
46842 itscnhlinecirc02plem3
46877 |