MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnoddm1d2 Structured version   Visualization version   GIF version

Theorem nnoddm1d2 16366
Description: A positive integer is odd iff its successor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021.)
Assertion
Ref Expression
nnoddm1d2 (𝑁 ∈ ℕ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℕ))

Proof of Theorem nnoddm1d2
StepHypRef Expression
1 nnz 12612 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
2 oddp1d2 16338 . . 3 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℤ))
31, 2syl 17 . 2 (𝑁 ∈ ℕ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℤ))
4 peano2nn 12257 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
54nnred 12260 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℝ)
6 2re 12319 . . . . . . . 8 2 ∈ ℝ
76a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 2 ∈ ℝ)
8 nnre 12252 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
9 1red 11247 . . . . . . . 8 (𝑁 ∈ ℕ → 1 ∈ ℝ)
10 nngt0 12276 . . . . . . . 8 (𝑁 ∈ ℕ → 0 < 𝑁)
11 0lt1 11768 . . . . . . . . 9 0 < 1
1211a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 0 < 1)
138, 9, 10, 12addgt0d 11821 . . . . . . 7 (𝑁 ∈ ℕ → 0 < (𝑁 + 1))
14 2pos 12348 . . . . . . . 8 0 < 2
1514a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 0 < 2)
165, 7, 13, 15divgt0d 12182 . . . . . 6 (𝑁 ∈ ℕ → 0 < ((𝑁 + 1) / 2))
1716anim1ci 614 . . . . 5 ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 < ((𝑁 + 1) / 2)))
18 elnnz 12601 . . . . 5 (((𝑁 + 1) / 2) ∈ ℕ ↔ (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 < ((𝑁 + 1) / 2)))
1917, 18sylibr 233 . . . 4 ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1) / 2) ∈ ℕ)
2019ex 411 . . 3 (𝑁 ∈ ℕ → (((𝑁 + 1) / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℕ))
21 nnz 12612 . . 3 (((𝑁 + 1) / 2) ∈ ℕ → ((𝑁 + 1) / 2) ∈ ℤ)
2220, 21impbid1 224 . 2 (𝑁 ∈ ℕ → (((𝑁 + 1) / 2) ∈ ℤ ↔ ((𝑁 + 1) / 2) ∈ ℕ))
233, 22bitrd 278 1 (𝑁 ∈ ℕ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  wcel 2098   class class class wbr 5149  (class class class)co 7419  cr 11139  0cc0 11140  1c1 11141   + caddc 11143   < clt 11280   / cdiv 11903  cn 12245  2c2 12300  cz 12591  cdvds 16234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-div 11904  df-nn 12246  df-2 12308  df-n0 12506  df-z 12592  df-dvds 16235
This theorem is referenced by:  gausslemma2dlem0b  27335
  Copyright terms: Public domain W3C validator