MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnoddm1d2 Structured version   Visualization version   GIF version

Theorem nnoddm1d2 15972
Description: A positive integer is odd iff its successor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021.)
Assertion
Ref Expression
nnoddm1d2 (𝑁 ∈ ℕ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℕ))

Proof of Theorem nnoddm1d2
StepHypRef Expression
1 nnz 12224 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
2 oddp1d2 15944 . . 3 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℤ))
31, 2syl 17 . 2 (𝑁 ∈ ℕ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℤ))
4 peano2nn 11867 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
54nnred 11870 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℝ)
6 2re 11929 . . . . . . . 8 2 ∈ ℝ
76a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 2 ∈ ℝ)
8 nnre 11862 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
9 1red 10859 . . . . . . . 8 (𝑁 ∈ ℕ → 1 ∈ ℝ)
10 nngt0 11886 . . . . . . . 8 (𝑁 ∈ ℕ → 0 < 𝑁)
11 0lt1 11379 . . . . . . . . 9 0 < 1
1211a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 0 < 1)
138, 9, 10, 12addgt0d 11432 . . . . . . 7 (𝑁 ∈ ℕ → 0 < (𝑁 + 1))
14 2pos 11958 . . . . . . . 8 0 < 2
1514a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → 0 < 2)
165, 7, 13, 15divgt0d 11792 . . . . . 6 (𝑁 ∈ ℕ → 0 < ((𝑁 + 1) / 2))
1716anim1ci 619 . . . . 5 ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 < ((𝑁 + 1) / 2)))
18 elnnz 12211 . . . . 5 (((𝑁 + 1) / 2) ∈ ℕ ↔ (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 < ((𝑁 + 1) / 2)))
1917, 18sylibr 237 . . . 4 ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1) / 2) ∈ ℕ)
2019ex 416 . . 3 (𝑁 ∈ ℕ → (((𝑁 + 1) / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℕ))
21 nnz 12224 . . 3 (((𝑁 + 1) / 2) ∈ ℕ → ((𝑁 + 1) / 2) ∈ ℤ)
2220, 21impbid1 228 . 2 (𝑁 ∈ ℕ → (((𝑁 + 1) / 2) ∈ ℤ ↔ ((𝑁 + 1) / 2) ∈ ℕ))
233, 22bitrd 282 1 (𝑁 ∈ ℕ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wcel 2111   class class class wbr 5068  (class class class)co 7232  cr 10753  0cc0 10754  1c1 10755   + caddc 10757   < clt 10892   / cdiv 11514  cn 11855  2c2 11910  cz 12201  cdvds 15840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-sep 5207  ax-nul 5214  ax-pow 5273  ax-pr 5337  ax-un 7542  ax-resscn 10811  ax-1cn 10812  ax-icn 10813  ax-addcl 10814  ax-addrcl 10815  ax-mulcl 10816  ax-mulrcl 10817  ax-mulcom 10818  ax-addass 10819  ax-mulass 10820  ax-distr 10821  ax-i2m1 10822  ax-1ne0 10823  ax-1rid 10824  ax-rnegex 10825  ax-rrecex 10826  ax-cnre 10827  ax-pre-lttri 10828  ax-pre-lttrn 10829  ax-pre-ltadd 10830  ax-pre-mulgt0 10831
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3423  df-sbc 3710  df-csb 3827  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4253  df-if 4455  df-pw 4530  df-sn 4557  df-pr 4559  df-tp 4561  df-op 4563  df-uni 4835  df-iun 4921  df-br 5069  df-opab 5131  df-mpt 5151  df-tr 5177  df-id 5470  df-eprel 5475  df-po 5483  df-so 5484  df-fr 5524  df-we 5526  df-xp 5572  df-rel 5573  df-cnv 5574  df-co 5575  df-dm 5576  df-rn 5577  df-res 5578  df-ima 5579  df-pred 6176  df-ord 6234  df-on 6235  df-lim 6236  df-suc 6237  df-iota 6356  df-fun 6400  df-fn 6401  df-f 6402  df-f1 6403  df-fo 6404  df-f1o 6405  df-fv 6406  df-riota 7189  df-ov 7235  df-oprab 7236  df-mpo 7237  df-om 7664  df-wrecs 8068  df-recs 8129  df-rdg 8167  df-er 8412  df-en 8648  df-dom 8649  df-sdom 8650  df-pnf 10894  df-mnf 10895  df-xr 10896  df-ltxr 10897  df-le 10898  df-sub 11089  df-neg 11090  df-div 11515  df-nn 11856  df-2 11918  df-n0 12116  df-z 12202  df-dvds 15841
This theorem is referenced by:  gausslemma2dlem0b  26262
  Copyright terms: Public domain W3C validator