Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnoddm1d2 | Structured version Visualization version GIF version |
Description: A positive integer is odd iff its successor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021.) |
Ref | Expression |
---|---|
nnoddm1d2 | ⊢ (𝑁 ∈ ℕ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℕ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnz 12224 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
2 | oddp1d2 15944 | . . 3 ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℤ)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝑁 ∈ ℕ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℤ)) |
4 | peano2nn 11867 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ) | |
5 | 4 | nnred 11870 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℝ) |
6 | 2re 11929 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
7 | 6 | a1i 11 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 2 ∈ ℝ) |
8 | nnre 11862 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
9 | 1red 10859 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 1 ∈ ℝ) | |
10 | nngt0 11886 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
11 | 0lt1 11379 | . . . . . . . . 9 ⊢ 0 < 1 | |
12 | 11 | a1i 11 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 0 < 1) |
13 | 8, 9, 10, 12 | addgt0d 11432 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 0 < (𝑁 + 1)) |
14 | 2pos 11958 | . . . . . . . 8 ⊢ 0 < 2 | |
15 | 14 | a1i 11 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 0 < 2) |
16 | 5, 7, 13, 15 | divgt0d 11792 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 0 < ((𝑁 + 1) / 2)) |
17 | 16 | anim1ci 619 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 < ((𝑁 + 1) / 2))) |
18 | elnnz 12211 | . . . . 5 ⊢ (((𝑁 + 1) / 2) ∈ ℕ ↔ (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 < ((𝑁 + 1) / 2))) | |
19 | 17, 18 | sylibr 237 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1) / 2) ∈ ℕ) |
20 | 19 | ex 416 | . . 3 ⊢ (𝑁 ∈ ℕ → (((𝑁 + 1) / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℕ)) |
21 | nnz 12224 | . . 3 ⊢ (((𝑁 + 1) / 2) ∈ ℕ → ((𝑁 + 1) / 2) ∈ ℤ) | |
22 | 20, 21 | impbid1 228 | . 2 ⊢ (𝑁 ∈ ℕ → (((𝑁 + 1) / 2) ∈ ℤ ↔ ((𝑁 + 1) / 2) ∈ ℕ)) |
23 | 3, 22 | bitrd 282 | 1 ⊢ (𝑁 ∈ ℕ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℕ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∈ wcel 2111 class class class wbr 5068 (class class class)co 7232 ℝcr 10753 0cc0 10754 1c1 10755 + caddc 10757 < clt 10892 / cdiv 11514 ℕcn 11855 2c2 11910 ℤcz 12201 ∥ cdvds 15840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-sep 5207 ax-nul 5214 ax-pow 5273 ax-pr 5337 ax-un 7542 ax-resscn 10811 ax-1cn 10812 ax-icn 10813 ax-addcl 10814 ax-addrcl 10815 ax-mulcl 10816 ax-mulrcl 10817 ax-mulcom 10818 ax-addass 10819 ax-mulass 10820 ax-distr 10821 ax-i2m1 10822 ax-1ne0 10823 ax-1rid 10824 ax-rnegex 10825 ax-rrecex 10826 ax-cnre 10827 ax-pre-lttri 10828 ax-pre-lttrn 10829 ax-pre-ltadd 10830 ax-pre-mulgt0 10831 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3423 df-sbc 3710 df-csb 3827 df-dif 3884 df-un 3886 df-in 3888 df-ss 3898 df-pss 3900 df-nul 4253 df-if 4455 df-pw 4530 df-sn 4557 df-pr 4559 df-tp 4561 df-op 4563 df-uni 4835 df-iun 4921 df-br 5069 df-opab 5131 df-mpt 5151 df-tr 5177 df-id 5470 df-eprel 5475 df-po 5483 df-so 5484 df-fr 5524 df-we 5526 df-xp 5572 df-rel 5573 df-cnv 5574 df-co 5575 df-dm 5576 df-rn 5577 df-res 5578 df-ima 5579 df-pred 6176 df-ord 6234 df-on 6235 df-lim 6236 df-suc 6237 df-iota 6356 df-fun 6400 df-fn 6401 df-f 6402 df-f1 6403 df-fo 6404 df-f1o 6405 df-fv 6406 df-riota 7189 df-ov 7235 df-oprab 7236 df-mpo 7237 df-om 7664 df-wrecs 8068 df-recs 8129 df-rdg 8167 df-er 8412 df-en 8648 df-dom 8649 df-sdom 8650 df-pnf 10894 df-mnf 10895 df-xr 10896 df-ltxr 10897 df-le 10898 df-sub 11089 df-neg 11090 df-div 11515 df-nn 11856 df-2 11918 df-n0 12116 df-z 12202 df-dvds 15841 |
This theorem is referenced by: gausslemma2dlem0b 26262 |
Copyright terms: Public domain | W3C validator |