| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnoddm1d2 | Structured version Visualization version GIF version | ||
| Description: A positive integer is odd iff its successor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021.) |
| Ref | Expression |
|---|---|
| nnoddm1d2 | ⊢ (𝑁 ∈ ℕ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℕ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnz 12498 | . . 3 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
| 2 | oddp1d2 16273 | . . 3 ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℤ)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝑁 ∈ ℕ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℤ)) |
| 4 | peano2nn 12146 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ) | |
| 5 | 4 | nnred 12149 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℝ) |
| 6 | 2re 12208 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
| 7 | 6 | a1i 11 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 2 ∈ ℝ) |
| 8 | nnre 12141 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
| 9 | 1red 11122 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 1 ∈ ℝ) | |
| 10 | nngt0 12165 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 0 < 𝑁) | |
| 11 | 0lt1 11648 | . . . . . . . . 9 ⊢ 0 < 1 | |
| 12 | 11 | a1i 11 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 0 < 1) |
| 13 | 8, 9, 10, 12 | addgt0d 11701 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 0 < (𝑁 + 1)) |
| 14 | 2pos 12237 | . . . . . . . 8 ⊢ 0 < 2 | |
| 15 | 14 | a1i 11 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 0 < 2) |
| 16 | 5, 7, 13, 15 | divgt0d 12066 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 0 < ((𝑁 + 1) / 2)) |
| 17 | 16 | anim1ci 616 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 < ((𝑁 + 1) / 2))) |
| 18 | elnnz 12487 | . . . . 5 ⊢ (((𝑁 + 1) / 2) ∈ ℕ ↔ (((𝑁 + 1) / 2) ∈ ℤ ∧ 0 < ((𝑁 + 1) / 2))) | |
| 19 | 17, 18 | sylibr 234 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ ((𝑁 + 1) / 2) ∈ ℤ) → ((𝑁 + 1) / 2) ∈ ℕ) |
| 20 | 19 | ex 412 | . . 3 ⊢ (𝑁 ∈ ℕ → (((𝑁 + 1) / 2) ∈ ℤ → ((𝑁 + 1) / 2) ∈ ℕ)) |
| 21 | nnz 12498 | . . 3 ⊢ (((𝑁 + 1) / 2) ∈ ℕ → ((𝑁 + 1) / 2) ∈ ℤ) | |
| 22 | 20, 21 | impbid1 225 | . 2 ⊢ (𝑁 ∈ ℕ → (((𝑁 + 1) / 2) ∈ ℤ ↔ ((𝑁 + 1) / 2) ∈ ℕ)) |
| 23 | 3, 22 | bitrd 279 | 1 ⊢ (𝑁 ∈ ℕ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℕ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2113 class class class wbr 5095 (class class class)co 7354 ℝcr 11014 0cc0 11015 1c1 11016 + caddc 11018 < clt 11155 / cdiv 11783 ℕcn 12134 2c2 12189 ℤcz 12477 ∥ cdvds 16167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-n0 12391 df-z 12478 df-dvds 16168 |
| This theorem is referenced by: gausslemma2dlem0b 27298 |
| Copyright terms: Public domain | W3C validator |