Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem15 Structured version   Visualization version   GIF version

Theorem stirlinglem15 45709
Description: The Stirling's formula is proven using a number of local definitions. The main theorem stirling 45710 will use this final lemma, but it will not expose the local definitions. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem15.1 𝑛𝜑
stirlinglem15.2 𝑆 = (𝑛 ∈ ℕ0 ↦ ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)))
stirlinglem15.3 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
stirlinglem15.4 𝐷 = (𝑛 ∈ ℕ ↦ (𝐴‘(2 · 𝑛)))
stirlinglem15.5 𝐸 = (𝑛 ∈ ℕ ↦ ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))
stirlinglem15.6 𝑉 = (𝑛 ∈ ℕ ↦ ((((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)) / ((2 · 𝑛) + 1)))
stirlinglem15.7 𝐹 = (𝑛 ∈ ℕ ↦ (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)))
stirlinglem15.8 𝐻 = (𝑛 ∈ ℕ ↦ ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))))
stirlinglem15.9 (𝜑𝐶 ∈ ℝ+)
stirlinglem15.10 (𝜑𝐴𝐶)
Assertion
Ref Expression
stirlinglem15 (𝜑 → (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆𝑛))) ⇝ 1)
Distinct variable group:   𝐶,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑛)   𝐷(𝑛)   𝑆(𝑛)   𝐸(𝑛)   𝐹(𝑛)   𝐻(𝑛)   𝑉(𝑛)

Proof of Theorem stirlinglem15
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 stirlinglem15.1 . . 3 𝑛𝜑
2 nnnn0 12531 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
32adantl 480 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
4 2cnd 12342 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 2 ∈ ℂ)
5 picn 26487 . . . . . . . . . . 11 π ∈ ℂ
65a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → π ∈ ℂ)
74, 6mulcld 11284 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (2 · π) ∈ ℂ)
8 nncn 12272 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
98adantl 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
107, 9mulcld 11284 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((2 · π) · 𝑛) ∈ ℂ)
1110sqrtcld 15442 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (√‘((2 · π) · 𝑛)) ∈ ℂ)
12 ere 16091 . . . . . . . . . . . 12 e ∈ ℝ
1312recni 11278 . . . . . . . . . . 11 e ∈ ℂ
1413a1i 11 . . . . . . . . . 10 (𝑛 ∈ ℕ → e ∈ ℂ)
15 epos 16209 . . . . . . . . . . . 12 0 < e
1612, 15gt0ne0ii 11800 . . . . . . . . . . 11 e ≠ 0
1716a1i 11 . . . . . . . . . 10 (𝑛 ∈ ℕ → e ≠ 0)
188, 14, 17divcld 12041 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝑛 / e) ∈ ℂ)
1918, 2expcld 14165 . . . . . . . 8 (𝑛 ∈ ℕ → ((𝑛 / e)↑𝑛) ∈ ℂ)
2019adantl 480 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑛 / e)↑𝑛) ∈ ℂ)
2111, 20mulcld 11284 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)) ∈ ℂ)
22 stirlinglem15.2 . . . . . . 7 𝑆 = (𝑛 ∈ ℕ0 ↦ ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)))
2322fvmpt2 7020 . . . . . 6 ((𝑛 ∈ ℕ0 ∧ ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)) ∈ ℂ) → (𝑆𝑛) = ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)))
243, 21, 23syl2anc 582 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑆𝑛) = ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)))
2524oveq2d 7440 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((!‘𝑛) / (𝑆𝑛)) = ((!‘𝑛) / ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛))))
266sqrtcld 15442 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (√‘π) ∈ ℂ)
27 2cnd 12342 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 2 ∈ ℂ)
2827, 8mulcld 11284 . . . . . . . . . 10 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℂ)
2928sqrtcld 15442 . . . . . . . . 9 (𝑛 ∈ ℕ → (√‘(2 · 𝑛)) ∈ ℂ)
3029adantl 480 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (√‘(2 · 𝑛)) ∈ ℂ)
3126, 30, 20mulassd 11287 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (((√‘π) · (√‘(2 · 𝑛))) · ((𝑛 / e)↑𝑛)) = ((√‘π) · ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
32 stirlinglem15.7 . . . . . . . . . . . . . . . 16 𝐹 = (𝑛 ∈ ℕ ↦ (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)))
33 nfmpt1 5261 . . . . . . . . . . . . . . . 16 𝑛(𝑛 ∈ ℕ ↦ (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)))
3432, 33nfcxfr 2890 . . . . . . . . . . . . . . 15 𝑛𝐹
35 stirlinglem15.8 . . . . . . . . . . . . . . . 16 𝐻 = (𝑛 ∈ ℕ ↦ ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))))
36 nfmpt1 5261 . . . . . . . . . . . . . . . 16 𝑛(𝑛 ∈ ℕ ↦ ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))))
3735, 36nfcxfr 2890 . . . . . . . . . . . . . . 15 𝑛𝐻
38 stirlinglem15.6 . . . . . . . . . . . . . . . 16 𝑉 = (𝑛 ∈ ℕ ↦ ((((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)) / ((2 · 𝑛) + 1)))
39 nfmpt1 5261 . . . . . . . . . . . . . . . 16 𝑛(𝑛 ∈ ℕ ↦ ((((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)) / ((2 · 𝑛) + 1)))
4038, 39nfcxfr 2890 . . . . . . . . . . . . . . 15 𝑛𝑉
41 nnuz 12917 . . . . . . . . . . . . . . 15 ℕ = (ℤ‘1)
42 1zzd 12645 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℤ)
43 stirlinglem15.3 . . . . . . . . . . . . . . . . 17 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
44 nfmpt1 5261 . . . . . . . . . . . . . . . . 17 𝑛(𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
4543, 44nfcxfr 2890 . . . . . . . . . . . . . . . 16 𝑛𝐴
46 stirlinglem15.4 . . . . . . . . . . . . . . . . 17 𝐷 = (𝑛 ∈ ℕ ↦ (𝐴‘(2 · 𝑛)))
47 nfmpt1 5261 . . . . . . . . . . . . . . . . 17 𝑛(𝑛 ∈ ℕ ↦ (𝐴‘(2 · 𝑛)))
4846, 47nfcxfr 2890 . . . . . . . . . . . . . . . 16 𝑛𝐷
49 faccl 14300 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ0 → (!‘𝑛) ∈ ℕ)
502, 49syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → (!‘𝑛) ∈ ℕ)
5150nnrpd 13068 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (!‘𝑛) ∈ ℝ+)
52 2rp 13033 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℝ+
5352a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → 2 ∈ ℝ+)
54 nnrp 13039 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
5553, 54rpmulcld 13086 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℝ+)
5655rpsqrtcld 15416 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → (√‘(2 · 𝑛)) ∈ ℝ+)
57 epr 16210 . . . . . . . . . . . . . . . . . . . . . . 23 e ∈ ℝ+
5857a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → e ∈ ℝ+)
5954, 58rpdivcld 13087 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → (𝑛 / e) ∈ ℝ+)
60 nnz 12631 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
6159, 60rpexpcld 14264 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → ((𝑛 / e)↑𝑛) ∈ ℝ+)
6256, 61rpmulcld 13086 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) ∈ ℝ+)
6351, 62rpdivcld 13087 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) ∈ ℝ+)
6443, 63fmpti 7126 . . . . . . . . . . . . . . . . 17 𝐴:ℕ⟶ℝ+
6564a1i 11 . . . . . . . . . . . . . . . 16 (𝜑𝐴:ℕ⟶ℝ+)
66 eqid 2726 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ ↦ ((𝐴𝑛)↑4)) = (𝑛 ∈ ℕ ↦ ((𝐴𝑛)↑4))
67 eqid 2726 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ ↦ ((𝐷𝑛)↑2)) = (𝑛 ∈ ℕ ↦ ((𝐷𝑛)↑2))
6864a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → 𝐴:ℕ⟶ℝ+)
69 2nn 12337 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℕ
7069a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 2 ∈ ℕ)
71 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
7270, 71nnmulcld 12317 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℕ)
7368, 72ffvelcdmd 7099 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (𝐴‘(2 · 𝑛)) ∈ ℝ+)
7446fvmpt2 7020 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ ∧ (𝐴‘(2 · 𝑛)) ∈ ℝ+) → (𝐷𝑛) = (𝐴‘(2 · 𝑛)))
7573, 74mpdan 685 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → (𝐷𝑛) = (𝐴‘(2 · 𝑛)))
7675, 73eqeltrd 2826 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (𝐷𝑛) ∈ ℝ+)
7776adantl 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) ∈ ℝ+)
78 stirlinglem15.9 . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ ℝ+)
79 stirlinglem15.10 . . . . . . . . . . . . . . . 16 (𝜑𝐴𝐶)
801, 45, 48, 46, 65, 32, 66, 67, 77, 78, 79stirlinglem8 45702 . . . . . . . . . . . . . . 15 (𝜑𝐹 ⇝ (𝐶↑2))
81 nnex 12270 . . . . . . . . . . . . . . . . . 18 ℕ ∈ V
8281mptex 7240 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ ↦ ((((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)) / ((2 · 𝑛) + 1))) ∈ V
8338, 82eqeltri 2822 . . . . . . . . . . . . . . . 16 𝑉 ∈ V
8483a1i 11 . . . . . . . . . . . . . . 15 (𝜑𝑉 ∈ V)
85 eqid 2726 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ ↦ (1 − (1 / ((2 · 𝑛) + 1)))) = (𝑛 ∈ ℕ ↦ (1 − (1 / ((2 · 𝑛) + 1))))
86 eqid 2726 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1))) = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1)))
87 eqid 2726 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ ↦ (1 / 𝑛)) = (𝑛 ∈ ℕ ↦ (1 / 𝑛))
8835, 85, 86, 87stirlinglem1 45695 . . . . . . . . . . . . . . . 16 𝐻 ⇝ (1 / 2)
8988a1i 11 . . . . . . . . . . . . . . 15 (𝜑𝐻 ⇝ (1 / 2))
9050nncnd 12280 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℕ → (!‘𝑛) ∈ ℂ)
9129, 19mulcld 11284 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℕ → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) ∈ ℂ)
9255sqrtgt0d 15417 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ ℕ → 0 < (√‘(2 · 𝑛)))
9392gt0ne0d 11828 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ ℕ → (√‘(2 · 𝑛)) ≠ 0)
94 nnne0 12298 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
958, 14, 94, 17divne0d 12057 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ ℕ → (𝑛 / e) ≠ 0)
9618, 95, 60expne0d 14171 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ ℕ → ((𝑛 / e)↑𝑛) ≠ 0)
9729, 19, 93, 96mulne0d 11916 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℕ → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) ≠ 0)
9890, 91, 97divcld 12041 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) ∈ ℂ)
9943fvmpt2 7020 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℕ ∧ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) ∈ ℂ) → (𝐴𝑛) = ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
10098, 99mpdan 685 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → (𝐴𝑛) = ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
101100, 98eqeltrd 2826 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → (𝐴𝑛) ∈ ℂ)
102 4nn0 12543 . . . . . . . . . . . . . . . . . . . . 21 4 ∈ ℕ0
103102a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → 4 ∈ ℕ0)
104101, 103expcld 14165 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → ((𝐴𝑛)↑4) ∈ ℂ)
10576rpcnd 13072 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → (𝐷𝑛) ∈ ℂ)
106105sqcld 14163 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → ((𝐷𝑛)↑2) ∈ ℂ)
10776rpne0d 13075 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → (𝐷𝑛) ≠ 0)
108 2z 12646 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℤ
109108a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → 2 ∈ ℤ)
110105, 107, 109expne0d 14171 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → ((𝐷𝑛)↑2) ≠ 0)
111104, 106, 110divcld 12041 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) ∈ ℂ)
11232fvmpt2 7020 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) ∈ ℂ) → (𝐹𝑛) = (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)))
113111, 112mpdan 685 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (𝐹𝑛) = (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)))
114113, 111eqeltrd 2826 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (𝐹𝑛) ∈ ℂ)
115114adantl 480 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℂ)
1168sqcld 14163 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (𝑛↑2) ∈ ℂ)
117 1cnd 11259 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 1 ∈ ℂ)
11828, 117addcld 11283 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → ((2 · 𝑛) + 1) ∈ ℂ)
1198, 118mulcld 11284 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (𝑛 · ((2 · 𝑛) + 1)) ∈ ℂ)
12072nnred 12279 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℝ)
121 1red 11265 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → 1 ∈ ℝ)
12272nngt0d 12313 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → 0 < (2 · 𝑛))
123 0lt1 11786 . . . . . . . . . . . . . . . . . . . . . . 23 0 < 1
124123a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → 0 < 1)
125120, 121, 122, 124addgt0d 11839 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 0 < ((2 · 𝑛) + 1))
126125gt0ne0d 11828 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → ((2 · 𝑛) + 1) ≠ 0)
1278, 118, 94, 126mulne0d 11916 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (𝑛 · ((2 · 𝑛) + 1)) ≠ 0)
128116, 119, 127divcld 12041 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))) ∈ ℂ)
12935fvmpt2 7020 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))) ∈ ℂ) → (𝐻𝑛) = ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))))
130128, 129mpdan 685 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (𝐻𝑛) = ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))))
131130, 128eqeltrd 2826 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (𝐻𝑛) ∈ ℂ)
132131adantl 480 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (𝐻𝑛) ∈ ℂ)
133111, 128mulcld 11284 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → ((((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) · ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))) ∈ ℂ)
134 stirlinglem15.5 . . . . . . . . . . . . . . . . . . . 20 𝐸 = (𝑛 ∈ ℕ ↦ ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))
13543, 46, 134, 38stirlinglem3 45697 . . . . . . . . . . . . . . . . . . 19 𝑉 = (𝑛 ∈ ℕ ↦ ((((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) · ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))))
136135fvmpt2 7020 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ ((((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) · ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))) ∈ ℂ) → (𝑉𝑛) = ((((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) · ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))))
137133, 136mpdan 685 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (𝑉𝑛) = ((((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) · ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))))
138113, 130oveq12d 7442 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → ((𝐹𝑛) · (𝐻𝑛)) = ((((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) · ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))))
139137, 138eqtr4d 2769 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (𝑉𝑛) = ((𝐹𝑛) · (𝐻𝑛)))
140139adantl 480 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (𝑉𝑛) = ((𝐹𝑛) · (𝐻𝑛)))
1411, 34, 37, 40, 41, 42, 80, 84, 89, 115, 132, 140climmulf 45225 . . . . . . . . . . . . . 14 (𝜑𝑉 ⇝ ((𝐶↑2) · (1 / 2)))
14238wallispi2 45694 . . . . . . . . . . . . . 14 𝑉 ⇝ (π / 2)
143 climuni 15554 . . . . . . . . . . . . . 14 ((𝑉 ⇝ ((𝐶↑2) · (1 / 2)) ∧ 𝑉 ⇝ (π / 2)) → ((𝐶↑2) · (1 / 2)) = (π / 2))
144141, 142, 143sylancl 584 . . . . . . . . . . . . 13 (𝜑 → ((𝐶↑2) · (1 / 2)) = (π / 2))
145144oveq1d 7439 . . . . . . . . . . . 12 (𝜑 → (((𝐶↑2) · (1 / 2)) / (1 / 2)) = ((π / 2) / (1 / 2)))
14678rpcnd 13072 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ ℂ)
147146sqcld 14163 . . . . . . . . . . . . 13 (𝜑 → (𝐶↑2) ∈ ℂ)
148 1cnd 11259 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℂ)
149148halfcld 12509 . . . . . . . . . . . . 13 (𝜑 → (1 / 2) ∈ ℂ)
150 2cnd 12342 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℂ)
151 2pos 12367 . . . . . . . . . . . . . . . 16 0 < 2
152151a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 0 < 2)
153152gt0ne0d 11828 . . . . . . . . . . . . . 14 (𝜑 → 2 ≠ 0)
154150, 153recne0d 12035 . . . . . . . . . . . . 13 (𝜑 → (1 / 2) ≠ 0)
155147, 149, 154divcan4d 12047 . . . . . . . . . . . 12 (𝜑 → (((𝐶↑2) · (1 / 2)) / (1 / 2)) = (𝐶↑2))
1565a1i 11 . . . . . . . . . . . . . 14 (𝜑 → π ∈ ℂ)
157123a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 0 < 1)
158157gt0ne0d 11828 . . . . . . . . . . . . . 14 (𝜑 → 1 ≠ 0)
159156, 148, 150, 158, 153divcan7d 12069 . . . . . . . . . . . . 13 (𝜑 → ((π / 2) / (1 / 2)) = (π / 1))
160156div1d 12033 . . . . . . . . . . . . 13 (𝜑 → (π / 1) = π)
161159, 160eqtrd 2766 . . . . . . . . . . . 12 (𝜑 → ((π / 2) / (1 / 2)) = π)
162145, 155, 1613eqtr3d 2774 . . . . . . . . . . 11 (𝜑 → (𝐶↑2) = π)
163162fveq2d 6905 . . . . . . . . . 10 (𝜑 → (√‘(𝐶↑2)) = (√‘π))
16478rprege0d 13077 . . . . . . . . . . 11 (𝜑 → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
165 sqrtsq 15274 . . . . . . . . . . 11 ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) → (√‘(𝐶↑2)) = 𝐶)
166164, 165syl 17 . . . . . . . . . 10 (𝜑 → (√‘(𝐶↑2)) = 𝐶)
167163, 166eqtr3d 2768 . . . . . . . . 9 (𝜑 → (√‘π) = 𝐶)
168167adantr 479 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (√‘π) = 𝐶)
169168oveq1d 7439 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((√‘π) · ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) = (𝐶 · ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
170146adantr 479 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐶 ∈ ℂ)
17191adantl 480 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) ∈ ℂ)
172170, 171mulcomd 11285 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐶 · ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) = (((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) · 𝐶))
17331, 169, 1723eqtrd 2770 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (((√‘π) · (√‘(2 · 𝑛))) · ((𝑛 / e)↑𝑛)) = (((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) · 𝐶))
174173oveq2d 7440 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((!‘𝑛) / (((√‘π) · (√‘(2 · 𝑛))) · ((𝑛 / e)↑𝑛))) = ((!‘𝑛) / (((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) · 𝐶)))
175 2re 12338 . . . . . . . . . . 11 2 ∈ ℝ
176175a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 2 ∈ ℝ)
177 pire 26486 . . . . . . . . . . 11 π ∈ ℝ
178177a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → π ∈ ℝ)
179176, 178remulcld 11294 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (2 · π) ∈ ℝ)
180 0le2 12366 . . . . . . . . . . 11 0 ≤ 2
181180a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 0 ≤ 2)
182 0re 11266 . . . . . . . . . . . 12 0 ∈ ℝ
183 pipos 26488 . . . . . . . . . . . 12 0 < π
184182, 177, 183ltleii 11387 . . . . . . . . . . 11 0 ≤ π
185184a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 0 ≤ π)
186176, 178, 181, 185mulge0d 11841 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 0 ≤ (2 · π))
1873nn0red 12585 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
1883nn0ge0d 12587 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 0 ≤ 𝑛)
189179, 186, 187, 188sqrtmuld 15429 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (√‘((2 · π) · 𝑛)) = ((√‘(2 · π)) · (√‘𝑛)))
190176, 181, 178, 185sqrtmuld 15429 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (√‘(2 · π)) = ((√‘2) · (√‘π)))
191190oveq1d 7439 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((√‘(2 · π)) · (√‘𝑛)) = (((√‘2) · (√‘π)) · (√‘𝑛)))
1924sqrtcld 15442 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (√‘2) ∈ ℂ)
1939sqrtcld 15442 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (√‘𝑛) ∈ ℂ)
194192, 26, 193mulassd 11287 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (((√‘2) · (√‘π)) · (√‘𝑛)) = ((√‘2) · ((√‘π) · (√‘𝑛))))
195192, 26, 193mul12d 11473 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((√‘2) · ((√‘π) · (√‘𝑛))) = ((√‘π) · ((√‘2) · (√‘𝑛))))
196176, 181, 187, 188sqrtmuld 15429 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (√‘(2 · 𝑛)) = ((√‘2) · (√‘𝑛)))
197196eqcomd 2732 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((√‘2) · (√‘𝑛)) = (√‘(2 · 𝑛)))
198197oveq2d 7440 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((√‘π) · ((√‘2) · (√‘𝑛))) = ((√‘π) · (√‘(2 · 𝑛))))
199195, 198eqtrd 2766 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((√‘2) · ((√‘π) · (√‘𝑛))) = ((√‘π) · (√‘(2 · 𝑛))))
200191, 194, 1993eqtrd 2770 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((√‘(2 · π)) · (√‘𝑛)) = ((√‘π) · (√‘(2 · 𝑛))))
201189, 200eqtrd 2766 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (√‘((2 · π) · 𝑛)) = ((√‘π) · (√‘(2 · 𝑛))))
202201oveq1d 7439 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)) = (((√‘π) · (√‘(2 · 𝑛))) · ((𝑛 / e)↑𝑛)))
203202oveq2d 7440 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((!‘𝑛) / ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛))) = ((!‘𝑛) / (((√‘π) · (√‘(2 · 𝑛))) · ((𝑛 / e)↑𝑛))))
20490adantl 480 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (!‘𝑛) ∈ ℂ)
20593adantl 480 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (√‘(2 · 𝑛)) ≠ 0)
20613a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → e ∈ ℂ)
20716a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → e ≠ 0)
2089, 206, 207divcld 12041 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑛 / e) ∈ ℂ)
20994adantl 480 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑛 ≠ 0)
2109, 206, 209, 207divne0d 12057 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑛 / e) ≠ 0)
21160adantl 480 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
212208, 210, 211expne0d 14171 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑛 / e)↑𝑛) ≠ 0)
21330, 20, 205, 212mulne0d 11916 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) ≠ 0)
21478rpne0d 13075 . . . . . . 7 (𝜑𝐶 ≠ 0)
215214adantr 479 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝐶 ≠ 0)
216204, 171, 170, 213, 215divdiv1d 12072 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) / 𝐶) = ((!‘𝑛) / (((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) · 𝐶)))
217174, 203, 2163eqtr4d 2776 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((!‘𝑛) / ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛))) = (((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) / 𝐶))
21898ancli 547 . . . . . . . 8 (𝑛 ∈ ℕ → (𝑛 ∈ ℕ ∧ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) ∈ ℂ))
219218adantl 480 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑛 ∈ ℕ ∧ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) ∈ ℂ))
220219, 99syl 17 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) = ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
221220eqcomd 2732 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) = (𝐴𝑛))
222221oveq1d 7439 . . . 4 ((𝜑𝑛 ∈ ℕ) → (((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) / 𝐶) = ((𝐴𝑛) / 𝐶))
22325, 217, 2223eqtrd 2770 . . 3 ((𝜑𝑛 ∈ ℕ) → ((!‘𝑛) / (𝑆𝑛)) = ((𝐴𝑛) / 𝐶))
2241, 223mpteq2da 5251 . 2 (𝜑 → (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆𝑛))) = (𝑛 ∈ ℕ ↦ ((𝐴𝑛) / 𝐶)))
225101adantl 480 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ∈ ℂ)
226225, 170, 215divrec2d 12045 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝑛) / 𝐶) = ((1 / 𝐶) · (𝐴𝑛)))
2271, 226mpteq2da 5251 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ ((𝐴𝑛) / 𝐶)) = (𝑛 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑛))))
228146, 214reccld 12034 . . . . 5 (𝜑 → (1 / 𝐶) ∈ ℂ)
22981mptex 7240 . . . . . 6 (𝑛 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑛))) ∈ V
230229a1i 11 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑛))) ∈ V)
23143a1i 11 . . . . . . . 8 (𝑘 ∈ ℕ → 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))))
232 simpr 483 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 = 𝑘)
233232fveq2d 6905 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (!‘𝑛) = (!‘𝑘))
234232oveq2d 7440 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (2 · 𝑛) = (2 · 𝑘))
235234fveq2d 6905 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (√‘(2 · 𝑛)) = (√‘(2 · 𝑘)))
236232oveq1d 7439 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (𝑛 / e) = (𝑘 / e))
237236, 232oveq12d 7442 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((𝑛 / e)↑𝑛) = ((𝑘 / e)↑𝑘))
238235, 237oveq12d 7442 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) = ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)))
239233, 238oveq12d 7442 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) = ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))))
240 id 22 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ)
241 nnnn0 12531 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
242 faccl 14300 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
243 nncn 12272 . . . . . . . . . 10 ((!‘𝑘) ∈ ℕ → (!‘𝑘) ∈ ℂ)
244241, 242, 2433syl 18 . . . . . . . . 9 (𝑘 ∈ ℕ → (!‘𝑘) ∈ ℂ)
245 2cnd 12342 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 2 ∈ ℂ)
246 nncn 12272 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
247245, 246mulcld 11284 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℂ)
248247sqrtcld 15442 . . . . . . . . . 10 (𝑘 ∈ ℕ → (√‘(2 · 𝑘)) ∈ ℂ)
24913a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → e ∈ ℂ)
25016a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → e ≠ 0)
251246, 249, 250divcld 12041 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝑘 / e) ∈ ℂ)
252251, 241expcld 14165 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((𝑘 / e)↑𝑘) ∈ ℂ)
253248, 252mulcld 11284 . . . . . . . . 9 (𝑘 ∈ ℕ → ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)) ∈ ℂ)
25452a1i 11 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 2 ∈ ℝ+)
255 nnrp 13039 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
256254, 255rpmulcld 13086 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℝ+)
257256sqrtgt0d 15417 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 0 < (√‘(2 · 𝑘)))
258257gt0ne0d 11828 . . . . . . . . . 10 (𝑘 ∈ ℕ → (√‘(2 · 𝑘)) ≠ 0)
259 nnne0 12298 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
260246, 249, 259, 250divne0d 12057 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝑘 / e) ≠ 0)
261 nnz 12631 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
262251, 260, 261expne0d 14171 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((𝑘 / e)↑𝑘) ≠ 0)
263248, 252, 258, 262mulne0d 11916 . . . . . . . . 9 (𝑘 ∈ ℕ → ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)) ≠ 0)
264244, 253, 263divcld 12041 . . . . . . . 8 (𝑘 ∈ ℕ → ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))) ∈ ℂ)
265231, 239, 240, 264fvmptd 7016 . . . . . . 7 (𝑘 ∈ ℕ → (𝐴𝑘) = ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))))
266265, 264eqeltrd 2826 . . . . . 6 (𝑘 ∈ ℕ → (𝐴𝑘) ∈ ℂ)
267266adantl 480 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℂ)
268 nfcv 2892 . . . . . . . . 9 𝑘((1 / 𝐶) · (𝐴𝑛))
269 nfcv 2892 . . . . . . . . . . 11 𝑛1
270 nfcv 2892 . . . . . . . . . . 11 𝑛 /
271 nfcv 2892 . . . . . . . . . . 11 𝑛𝐶
272269, 270, 271nfov 7454 . . . . . . . . . 10 𝑛(1 / 𝐶)
273 nfcv 2892 . . . . . . . . . 10 𝑛 ·
274 nfcv 2892 . . . . . . . . . . 11 𝑛𝑘
27545, 274nffv 6911 . . . . . . . . . 10 𝑛(𝐴𝑘)
276272, 273, 275nfov 7454 . . . . . . . . 9 𝑛((1 / 𝐶) · (𝐴𝑘))
277 fveq2 6901 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
278277oveq2d 7440 . . . . . . . . 9 (𝑛 = 𝑘 → ((1 / 𝐶) · (𝐴𝑛)) = ((1 / 𝐶) · (𝐴𝑘)))
279268, 276, 278cbvmpt 5264 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑛))) = (𝑘 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑘)))
280279a1i 11 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝑛 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑛))) = (𝑘 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑘))))
281280fveq1d 6903 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑛)))‘𝑘) = ((𝑘 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑘)))‘𝑘))
282 simpr 483 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
283146adantr 479 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 𝐶 ∈ ℂ)
284214adantr 479 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 𝐶 ≠ 0)
285283, 284reccld 12034 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (1 / 𝐶) ∈ ℂ)
286285, 267mulcld 11284 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((1 / 𝐶) · (𝐴𝑘)) ∈ ℂ)
287 eqid 2726 . . . . . . . 8 (𝑘 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑘))) = (𝑘 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑘)))
288287fvmpt2 7020 . . . . . . 7 ((𝑘 ∈ ℕ ∧ ((1 / 𝐶) · (𝐴𝑘)) ∈ ℂ) → ((𝑘 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑘)))‘𝑘) = ((1 / 𝐶) · (𝐴𝑘)))
289282, 286, 288syl2anc 582 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑘)))‘𝑘) = ((1 / 𝐶) · (𝐴𝑘)))
290281, 289eqtrd 2766 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑛)))‘𝑘) = ((1 / 𝐶) · (𝐴𝑘)))
29141, 42, 79, 228, 230, 267, 290climmulc2 15639 . . . 4 (𝜑 → (𝑛 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑛))) ⇝ ((1 / 𝐶) · 𝐶))
292146, 214recid2d 12037 . . . 4 (𝜑 → ((1 / 𝐶) · 𝐶) = 1)
293291, 292breqtrd 5179 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑛))) ⇝ 1)
294227, 293eqbrtrd 5175 . 2 (𝜑 → (𝑛 ∈ ℕ ↦ ((𝐴𝑛) / 𝐶)) ⇝ 1)
295224, 294eqbrtrd 5175 1 (𝜑 → (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆𝑛))) ⇝ 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wnf 1778  wcel 2099  wne 2930  Vcvv 3462   class class class wbr 5153  cmpt 5236  wf 6550  cfv 6554  (class class class)co 7424  cc 11156  cr 11157  0cc0 11158  1c1 11159   + caddc 11161   · cmul 11163   < clt 11298  cle 11299  cmin 11494   / cdiv 11921  cn 12264  2c2 12319  4c4 12321  0cn0 12524  cz 12610  +crp 13028  cexp 14081  !cfa 14290  csqrt 15238  cli 15486  eceu 16064  πcpi 16068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9684  ax-cc 10478  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236  ax-addf 11237
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-symdif 4244  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-disj 5119  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-of 7690  df-ofr 7691  df-om 7877  df-1st 8003  df-2nd 8004  df-supp 8175  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-oadd 8500  df-omul 8501  df-er 8734  df-map 8857  df-pm 8858  df-ixp 8927  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-fsupp 9406  df-fi 9454  df-sup 9485  df-inf 9486  df-oi 9553  df-dju 9944  df-card 9982  df-acn 9985  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12611  df-dec 12730  df-uz 12875  df-q 12985  df-rp 13029  df-xneg 13146  df-xadd 13147  df-xmul 13148  df-ioo 13382  df-ioc 13383  df-ico 13384  df-icc 13385  df-fz 13539  df-fzo 13682  df-fl 13812  df-mod 13890  df-seq 14022  df-exp 14082  df-fac 14291  df-bc 14320  df-hash 14348  df-shft 15072  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-limsup 15473  df-clim 15490  df-rlim 15491  df-sum 15691  df-ef 16069  df-e 16070  df-sin 16071  df-cos 16072  df-pi 16074  df-struct 17149  df-sets 17166  df-slot 17184  df-ndx 17196  df-base 17214  df-ress 17243  df-plusg 17279  df-mulr 17280  df-starv 17281  df-sca 17282  df-vsca 17283  df-ip 17284  df-tset 17285  df-ple 17286  df-ds 17288  df-unif 17289  df-hom 17290  df-cco 17291  df-rest 17437  df-topn 17438  df-0g 17456  df-gsum 17457  df-topgen 17458  df-pt 17459  df-prds 17462  df-xrs 17517  df-qtop 17522  df-imas 17523  df-xps 17525  df-mre 17599  df-mrc 17600  df-acs 17602  df-mgm 18633  df-sgrp 18712  df-mnd 18728  df-submnd 18774  df-mulg 19062  df-cntz 19311  df-cmn 19780  df-psmet 21335  df-xmet 21336  df-met 21337  df-bl 21338  df-mopn 21339  df-fbas 21340  df-fg 21341  df-cnfld 21344  df-top 22887  df-topon 22904  df-topsp 22926  df-bases 22940  df-cld 23014  df-ntr 23015  df-cls 23016  df-nei 23093  df-lp 23131  df-perf 23132  df-cn 23222  df-cnp 23223  df-haus 23310  df-cmp 23382  df-tx 23557  df-hmeo 23750  df-fil 23841  df-fm 23933  df-flim 23934  df-flf 23935  df-xms 24317  df-ms 24318  df-tms 24319  df-cncf 24889  df-ovol 25484  df-vol 25485  df-mbf 25639  df-itg1 25640  df-itg2 25641  df-ibl 25642  df-itg 25643  df-0p 25690  df-limc 25886  df-dv 25887
This theorem is referenced by:  stirling  45710
  Copyright terms: Public domain W3C validator