Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem15 Structured version   Visualization version   GIF version

Theorem stirlinglem15 46103
Description: The Stirling's formula is proven using a number of local definitions. The main theorem stirling 46104 will use this final lemma, but it will not expose the local definitions. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem15.1 𝑛𝜑
stirlinglem15.2 𝑆 = (𝑛 ∈ ℕ0 ↦ ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)))
stirlinglem15.3 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
stirlinglem15.4 𝐷 = (𝑛 ∈ ℕ ↦ (𝐴‘(2 · 𝑛)))
stirlinglem15.5 𝐸 = (𝑛 ∈ ℕ ↦ ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))
stirlinglem15.6 𝑉 = (𝑛 ∈ ℕ ↦ ((((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)) / ((2 · 𝑛) + 1)))
stirlinglem15.7 𝐹 = (𝑛 ∈ ℕ ↦ (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)))
stirlinglem15.8 𝐻 = (𝑛 ∈ ℕ ↦ ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))))
stirlinglem15.9 (𝜑𝐶 ∈ ℝ+)
stirlinglem15.10 (𝜑𝐴𝐶)
Assertion
Ref Expression
stirlinglem15 (𝜑 → (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆𝑛))) ⇝ 1)
Distinct variable group:   𝐶,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝐴(𝑛)   𝐷(𝑛)   𝑆(𝑛)   𝐸(𝑛)   𝐹(𝑛)   𝐻(𝑛)   𝑉(𝑛)

Proof of Theorem stirlinglem15
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 stirlinglem15.1 . . 3 𝑛𝜑
2 nnnn0 12533 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
32adantl 481 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
4 2cnd 12344 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 2 ∈ ℂ)
5 picn 26501 . . . . . . . . . . 11 π ∈ ℂ
65a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → π ∈ ℂ)
74, 6mulcld 11281 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (2 · π) ∈ ℂ)
8 nncn 12274 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
98adantl 481 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
107, 9mulcld 11281 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((2 · π) · 𝑛) ∈ ℂ)
1110sqrtcld 15476 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (√‘((2 · π) · 𝑛)) ∈ ℂ)
12 ere 16125 . . . . . . . . . . . 12 e ∈ ℝ
1312recni 11275 . . . . . . . . . . 11 e ∈ ℂ
1413a1i 11 . . . . . . . . . 10 (𝑛 ∈ ℕ → e ∈ ℂ)
15 epos 16243 . . . . . . . . . . . 12 0 < e
1612, 15gt0ne0ii 11799 . . . . . . . . . . 11 e ≠ 0
1716a1i 11 . . . . . . . . . 10 (𝑛 ∈ ℕ → e ≠ 0)
188, 14, 17divcld 12043 . . . . . . . . 9 (𝑛 ∈ ℕ → (𝑛 / e) ∈ ℂ)
1918, 2expcld 14186 . . . . . . . 8 (𝑛 ∈ ℕ → ((𝑛 / e)↑𝑛) ∈ ℂ)
2019adantl 481 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑛 / e)↑𝑛) ∈ ℂ)
2111, 20mulcld 11281 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)) ∈ ℂ)
22 stirlinglem15.2 . . . . . . 7 𝑆 = (𝑛 ∈ ℕ0 ↦ ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)))
2322fvmpt2 7027 . . . . . 6 ((𝑛 ∈ ℕ0 ∧ ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)) ∈ ℂ) → (𝑆𝑛) = ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)))
243, 21, 23syl2anc 584 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑆𝑛) = ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)))
2524oveq2d 7447 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((!‘𝑛) / (𝑆𝑛)) = ((!‘𝑛) / ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛))))
266sqrtcld 15476 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (√‘π) ∈ ℂ)
27 2cnd 12344 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 2 ∈ ℂ)
2827, 8mulcld 11281 . . . . . . . . . 10 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℂ)
2928sqrtcld 15476 . . . . . . . . 9 (𝑛 ∈ ℕ → (√‘(2 · 𝑛)) ∈ ℂ)
3029adantl 481 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (√‘(2 · 𝑛)) ∈ ℂ)
3126, 30, 20mulassd 11284 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (((√‘π) · (√‘(2 · 𝑛))) · ((𝑛 / e)↑𝑛)) = ((√‘π) · ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
32 stirlinglem15.7 . . . . . . . . . . . . . . . 16 𝐹 = (𝑛 ∈ ℕ ↦ (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)))
33 nfmpt1 5250 . . . . . . . . . . . . . . . 16 𝑛(𝑛 ∈ ℕ ↦ (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)))
3432, 33nfcxfr 2903 . . . . . . . . . . . . . . 15 𝑛𝐹
35 stirlinglem15.8 . . . . . . . . . . . . . . . 16 𝐻 = (𝑛 ∈ ℕ ↦ ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))))
36 nfmpt1 5250 . . . . . . . . . . . . . . . 16 𝑛(𝑛 ∈ ℕ ↦ ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))))
3735, 36nfcxfr 2903 . . . . . . . . . . . . . . 15 𝑛𝐻
38 stirlinglem15.6 . . . . . . . . . . . . . . . 16 𝑉 = (𝑛 ∈ ℕ ↦ ((((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)) / ((2 · 𝑛) + 1)))
39 nfmpt1 5250 . . . . . . . . . . . . . . . 16 𝑛(𝑛 ∈ ℕ ↦ ((((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)) / ((2 · 𝑛) + 1)))
4038, 39nfcxfr 2903 . . . . . . . . . . . . . . 15 𝑛𝑉
41 nnuz 12921 . . . . . . . . . . . . . . 15 ℕ = (ℤ‘1)
42 1zzd 12648 . . . . . . . . . . . . . . 15 (𝜑 → 1 ∈ ℤ)
43 stirlinglem15.3 . . . . . . . . . . . . . . . . 17 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
44 nfmpt1 5250 . . . . . . . . . . . . . . . . 17 𝑛(𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
4543, 44nfcxfr 2903 . . . . . . . . . . . . . . . 16 𝑛𝐴
46 stirlinglem15.4 . . . . . . . . . . . . . . . . 17 𝐷 = (𝑛 ∈ ℕ ↦ (𝐴‘(2 · 𝑛)))
47 nfmpt1 5250 . . . . . . . . . . . . . . . . 17 𝑛(𝑛 ∈ ℕ ↦ (𝐴‘(2 · 𝑛)))
4846, 47nfcxfr 2903 . . . . . . . . . . . . . . . 16 𝑛𝐷
49 faccl 14322 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ0 → (!‘𝑛) ∈ ℕ)
502, 49syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → (!‘𝑛) ∈ ℕ)
5150nnrpd 13075 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (!‘𝑛) ∈ ℝ+)
52 2rp 13039 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℝ+
5352a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → 2 ∈ ℝ+)
54 nnrp 13046 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ+)
5553, 54rpmulcld 13093 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℝ+)
5655rpsqrtcld 15450 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → (√‘(2 · 𝑛)) ∈ ℝ+)
57 epr 16244 . . . . . . . . . . . . . . . . . . . . . . 23 e ∈ ℝ+
5857a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → e ∈ ℝ+)
5954, 58rpdivcld 13094 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → (𝑛 / e) ∈ ℝ+)
60 nnz 12634 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
6159, 60rpexpcld 14286 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → ((𝑛 / e)↑𝑛) ∈ ℝ+)
6256, 61rpmulcld 13093 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) ∈ ℝ+)
6351, 62rpdivcld 13094 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) ∈ ℝ+)
6443, 63fmpti 7132 . . . . . . . . . . . . . . . . 17 𝐴:ℕ⟶ℝ+
6564a1i 11 . . . . . . . . . . . . . . . 16 (𝜑𝐴:ℕ⟶ℝ+)
66 eqid 2737 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ ↦ ((𝐴𝑛)↑4)) = (𝑛 ∈ ℕ ↦ ((𝐴𝑛)↑4))
67 eqid 2737 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ ↦ ((𝐷𝑛)↑2)) = (𝑛 ∈ ℕ ↦ ((𝐷𝑛)↑2))
6864a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → 𝐴:ℕ⟶ℝ+)
69 2nn 12339 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℕ
7069a1i 11 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 2 ∈ ℕ)
71 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ)
7270, 71nnmulcld 12319 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℕ)
7368, 72ffvelcdmd 7105 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (𝐴‘(2 · 𝑛)) ∈ ℝ+)
7446fvmpt2 7027 . . . . . . . . . . . . . . . . . . 19 ((𝑛 ∈ ℕ ∧ (𝐴‘(2 · 𝑛)) ∈ ℝ+) → (𝐷𝑛) = (𝐴‘(2 · 𝑛)))
7573, 74mpdan 687 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → (𝐷𝑛) = (𝐴‘(2 · 𝑛)))
7675, 73eqeltrd 2841 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (𝐷𝑛) ∈ ℝ+)
7776adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) ∈ ℝ+)
78 stirlinglem15.9 . . . . . . . . . . . . . . . 16 (𝜑𝐶 ∈ ℝ+)
79 stirlinglem15.10 . . . . . . . . . . . . . . . 16 (𝜑𝐴𝐶)
801, 45, 48, 46, 65, 32, 66, 67, 77, 78, 79stirlinglem8 46096 . . . . . . . . . . . . . . 15 (𝜑𝐹 ⇝ (𝐶↑2))
81 nnex 12272 . . . . . . . . . . . . . . . . . 18 ℕ ∈ V
8281mptex 7243 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ ↦ ((((2↑(4 · 𝑛)) · ((!‘𝑛)↑4)) / ((!‘(2 · 𝑛))↑2)) / ((2 · 𝑛) + 1))) ∈ V
8338, 82eqeltri 2837 . . . . . . . . . . . . . . . 16 𝑉 ∈ V
8483a1i 11 . . . . . . . . . . . . . . 15 (𝜑𝑉 ∈ V)
85 eqid 2737 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ ↦ (1 − (1 / ((2 · 𝑛) + 1)))) = (𝑛 ∈ ℕ ↦ (1 − (1 / ((2 · 𝑛) + 1))))
86 eqid 2737 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1))) = (𝑛 ∈ ℕ ↦ (1 / ((2 · 𝑛) + 1)))
87 eqid 2737 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ ↦ (1 / 𝑛)) = (𝑛 ∈ ℕ ↦ (1 / 𝑛))
8835, 85, 86, 87stirlinglem1 46089 . . . . . . . . . . . . . . . 16 𝐻 ⇝ (1 / 2)
8988a1i 11 . . . . . . . . . . . . . . 15 (𝜑𝐻 ⇝ (1 / 2))
9050nncnd 12282 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℕ → (!‘𝑛) ∈ ℂ)
9129, 19mulcld 11281 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℕ → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) ∈ ℂ)
9255sqrtgt0d 15451 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ ℕ → 0 < (√‘(2 · 𝑛)))
9392gt0ne0d 11827 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ ℕ → (√‘(2 · 𝑛)) ≠ 0)
94 nnne0 12300 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
958, 14, 94, 17divne0d 12059 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 ∈ ℕ → (𝑛 / e) ≠ 0)
9618, 95, 60expne0d 14192 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 ∈ ℕ → ((𝑛 / e)↑𝑛) ≠ 0)
9729, 19, 93, 96mulne0d 11915 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℕ → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) ≠ 0)
9890, 91, 97divcld 12043 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) ∈ ℂ)
9943fvmpt2 7027 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑛 ∈ ℕ ∧ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) ∈ ℂ) → (𝐴𝑛) = ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
10098, 99mpdan 687 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → (𝐴𝑛) = ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
101100, 98eqeltrd 2841 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → (𝐴𝑛) ∈ ℂ)
102 4nn0 12545 . . . . . . . . . . . . . . . . . . . . 21 4 ∈ ℕ0
103102a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → 4 ∈ ℕ0)
104101, 103expcld 14186 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → ((𝐴𝑛)↑4) ∈ ℂ)
10576rpcnd 13079 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → (𝐷𝑛) ∈ ℂ)
106105sqcld 14184 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → ((𝐷𝑛)↑2) ∈ ℂ)
10776rpne0d 13082 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → (𝐷𝑛) ≠ 0)
108 2z 12649 . . . . . . . . . . . . . . . . . . . . 21 2 ∈ ℤ
109108a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → 2 ∈ ℤ)
110105, 107, 109expne0d 14192 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → ((𝐷𝑛)↑2) ≠ 0)
111104, 106, 110divcld 12043 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) ∈ ℂ)
11232fvmpt2 7027 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) ∈ ℂ) → (𝐹𝑛) = (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)))
113111, 112mpdan 687 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (𝐹𝑛) = (((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)))
114113, 111eqeltrd 2841 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (𝐹𝑛) ∈ ℂ)
115114adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (𝐹𝑛) ∈ ℂ)
1168sqcld 14184 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (𝑛↑2) ∈ ℂ)
117 1cnd 11256 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 1 ∈ ℂ)
11828, 117addcld 11280 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → ((2 · 𝑛) + 1) ∈ ℂ)
1198, 118mulcld 11281 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (𝑛 · ((2 · 𝑛) + 1)) ∈ ℂ)
12072nnred 12281 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → (2 · 𝑛) ∈ ℝ)
121 1red 11262 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → 1 ∈ ℝ)
12272nngt0d 12315 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → 0 < (2 · 𝑛))
123 0lt1 11785 . . . . . . . . . . . . . . . . . . . . . . 23 0 < 1
124123a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℕ → 0 < 1)
125120, 121, 122, 124addgt0d 11838 . . . . . . . . . . . . . . . . . . . . 21 (𝑛 ∈ ℕ → 0 < ((2 · 𝑛) + 1))
126125gt0ne0d 11827 . . . . . . . . . . . . . . . . . . . 20 (𝑛 ∈ ℕ → ((2 · 𝑛) + 1) ≠ 0)
1278, 118, 94, 126mulne0d 11915 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ → (𝑛 · ((2 · 𝑛) + 1)) ≠ 0)
128116, 119, 127divcld 12043 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))) ∈ ℂ)
12935fvmpt2 7027 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))) ∈ ℂ) → (𝐻𝑛) = ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))))
130128, 129mpdan 687 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (𝐻𝑛) = ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1))))
131130, 128eqeltrd 2841 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (𝐻𝑛) ∈ ℂ)
132131adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (𝐻𝑛) ∈ ℂ)
133111, 128mulcld 11281 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ → ((((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) · ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))) ∈ ℂ)
134 stirlinglem15.5 . . . . . . . . . . . . . . . . . . . 20 𝐸 = (𝑛 ∈ ℕ ↦ ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))
13543, 46, 134, 38stirlinglem3 46091 . . . . . . . . . . . . . . . . . . 19 𝑉 = (𝑛 ∈ ℕ ↦ ((((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) · ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))))
136135fvmpt2 7027 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ ℕ ∧ ((((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) · ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))) ∈ ℂ) → (𝑉𝑛) = ((((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) · ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))))
137133, 136mpdan 687 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → (𝑉𝑛) = ((((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) · ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))))
138113, 130oveq12d 7449 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ → ((𝐹𝑛) · (𝐻𝑛)) = ((((𝐴𝑛)↑4) / ((𝐷𝑛)↑2)) · ((𝑛↑2) / (𝑛 · ((2 · 𝑛) + 1)))))
139137, 138eqtr4d 2780 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (𝑉𝑛) = ((𝐹𝑛) · (𝐻𝑛)))
140139adantl 481 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ ℕ) → (𝑉𝑛) = ((𝐹𝑛) · (𝐻𝑛)))
1411, 34, 37, 40, 41, 42, 80, 84, 89, 115, 132, 140climmulf 45619 . . . . . . . . . . . . . 14 (𝜑𝑉 ⇝ ((𝐶↑2) · (1 / 2)))
14238wallispi2 46088 . . . . . . . . . . . . . 14 𝑉 ⇝ (π / 2)
143 climuni 15588 . . . . . . . . . . . . . 14 ((𝑉 ⇝ ((𝐶↑2) · (1 / 2)) ∧ 𝑉 ⇝ (π / 2)) → ((𝐶↑2) · (1 / 2)) = (π / 2))
144141, 142, 143sylancl 586 . . . . . . . . . . . . 13 (𝜑 → ((𝐶↑2) · (1 / 2)) = (π / 2))
145144oveq1d 7446 . . . . . . . . . . . 12 (𝜑 → (((𝐶↑2) · (1 / 2)) / (1 / 2)) = ((π / 2) / (1 / 2)))
14678rpcnd 13079 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ ℂ)
147146sqcld 14184 . . . . . . . . . . . . 13 (𝜑 → (𝐶↑2) ∈ ℂ)
148 1cnd 11256 . . . . . . . . . . . . . 14 (𝜑 → 1 ∈ ℂ)
149148halfcld 12511 . . . . . . . . . . . . 13 (𝜑 → (1 / 2) ∈ ℂ)
150 2cnd 12344 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℂ)
151 2pos 12369 . . . . . . . . . . . . . . . 16 0 < 2
152151a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 0 < 2)
153152gt0ne0d 11827 . . . . . . . . . . . . . 14 (𝜑 → 2 ≠ 0)
154150, 153recne0d 12037 . . . . . . . . . . . . 13 (𝜑 → (1 / 2) ≠ 0)
155147, 149, 154divcan4d 12049 . . . . . . . . . . . 12 (𝜑 → (((𝐶↑2) · (1 / 2)) / (1 / 2)) = (𝐶↑2))
1565a1i 11 . . . . . . . . . . . . . 14 (𝜑 → π ∈ ℂ)
157123a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 0 < 1)
158157gt0ne0d 11827 . . . . . . . . . . . . . 14 (𝜑 → 1 ≠ 0)
159156, 148, 150, 158, 153divcan7d 12071 . . . . . . . . . . . . 13 (𝜑 → ((π / 2) / (1 / 2)) = (π / 1))
160156div1d 12035 . . . . . . . . . . . . 13 (𝜑 → (π / 1) = π)
161159, 160eqtrd 2777 . . . . . . . . . . . 12 (𝜑 → ((π / 2) / (1 / 2)) = π)
162145, 155, 1613eqtr3d 2785 . . . . . . . . . . 11 (𝜑 → (𝐶↑2) = π)
163162fveq2d 6910 . . . . . . . . . 10 (𝜑 → (√‘(𝐶↑2)) = (√‘π))
16478rprege0d 13084 . . . . . . . . . . 11 (𝜑 → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
165 sqrtsq 15308 . . . . . . . . . . 11 ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) → (√‘(𝐶↑2)) = 𝐶)
166164, 165syl 17 . . . . . . . . . 10 (𝜑 → (√‘(𝐶↑2)) = 𝐶)
167163, 166eqtr3d 2779 . . . . . . . . 9 (𝜑 → (√‘π) = 𝐶)
168167adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (√‘π) = 𝐶)
169168oveq1d 7446 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((√‘π) · ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) = (𝐶 · ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
170146adantr 480 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝐶 ∈ ℂ)
17191adantl 481 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) ∈ ℂ)
172170, 171mulcomd 11282 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝐶 · ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) = (((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) · 𝐶))
17331, 169, 1723eqtrd 2781 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (((√‘π) · (√‘(2 · 𝑛))) · ((𝑛 / e)↑𝑛)) = (((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) · 𝐶))
174173oveq2d 7447 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((!‘𝑛) / (((√‘π) · (√‘(2 · 𝑛))) · ((𝑛 / e)↑𝑛))) = ((!‘𝑛) / (((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) · 𝐶)))
175 2re 12340 . . . . . . . . . . 11 2 ∈ ℝ
176175a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 2 ∈ ℝ)
177 pire 26500 . . . . . . . . . . 11 π ∈ ℝ
178177a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → π ∈ ℝ)
179176, 178remulcld 11291 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (2 · π) ∈ ℝ)
180 0le2 12368 . . . . . . . . . . 11 0 ≤ 2
181180a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 0 ≤ 2)
182 0re 11263 . . . . . . . . . . . 12 0 ∈ ℝ
183 pipos 26502 . . . . . . . . . . . 12 0 < π
184182, 177, 183ltleii 11384 . . . . . . . . . . 11 0 ≤ π
185184a1i 11 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → 0 ≤ π)
186176, 178, 181, 185mulge0d 11840 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 0 ≤ (2 · π))
1873nn0red 12588 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
1883nn0ge0d 12590 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 0 ≤ 𝑛)
189179, 186, 187, 188sqrtmuld 15463 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (√‘((2 · π) · 𝑛)) = ((√‘(2 · π)) · (√‘𝑛)))
190176, 181, 178, 185sqrtmuld 15463 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (√‘(2 · π)) = ((√‘2) · (√‘π)))
191190oveq1d 7446 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((√‘(2 · π)) · (√‘𝑛)) = (((√‘2) · (√‘π)) · (√‘𝑛)))
1924sqrtcld 15476 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (√‘2) ∈ ℂ)
1939sqrtcld 15476 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (√‘𝑛) ∈ ℂ)
194192, 26, 193mulassd 11284 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (((√‘2) · (√‘π)) · (√‘𝑛)) = ((√‘2) · ((√‘π) · (√‘𝑛))))
195192, 26, 193mul12d 11470 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((√‘2) · ((√‘π) · (√‘𝑛))) = ((√‘π) · ((√‘2) · (√‘𝑛))))
196176, 181, 187, 188sqrtmuld 15463 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → (√‘(2 · 𝑛)) = ((√‘2) · (√‘𝑛)))
197196eqcomd 2743 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → ((√‘2) · (√‘𝑛)) = (√‘(2 · 𝑛)))
198197oveq2d 7447 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → ((√‘π) · ((√‘2) · (√‘𝑛))) = ((√‘π) · (√‘(2 · 𝑛))))
199195, 198eqtrd 2777 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → ((√‘2) · ((√‘π) · (√‘𝑛))) = ((√‘π) · (√‘(2 · 𝑛))))
200191, 194, 1993eqtrd 2781 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → ((√‘(2 · π)) · (√‘𝑛)) = ((√‘π) · (√‘(2 · 𝑛))))
201189, 200eqtrd 2777 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (√‘((2 · π) · 𝑛)) = ((√‘π) · (√‘(2 · 𝑛))))
202201oveq1d 7446 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛)) = (((√‘π) · (√‘(2 · 𝑛))) · ((𝑛 / e)↑𝑛)))
203202oveq2d 7447 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((!‘𝑛) / ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛))) = ((!‘𝑛) / (((√‘π) · (√‘(2 · 𝑛))) · ((𝑛 / e)↑𝑛))))
20490adantl 481 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (!‘𝑛) ∈ ℂ)
20593adantl 481 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (√‘(2 · 𝑛)) ≠ 0)
20613a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → e ∈ ℂ)
20716a1i 11 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → e ≠ 0)
2089, 206, 207divcld 12043 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑛 / e) ∈ ℂ)
20994adantl 481 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → 𝑛 ≠ 0)
2109, 206, 209, 207divne0d 12059 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → (𝑛 / e) ≠ 0)
21160adantl 481 . . . . . . . 8 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
212208, 210, 211expne0d 14192 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → ((𝑛 / e)↑𝑛) ≠ 0)
21330, 20, 205, 212mulne0d 11915 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) ≠ 0)
21478rpne0d 13082 . . . . . . 7 (𝜑𝐶 ≠ 0)
215214adantr 480 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝐶 ≠ 0)
216204, 171, 170, 213, 215divdiv1d 12074 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) / 𝐶) = ((!‘𝑛) / (((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) · 𝐶)))
217174, 203, 2163eqtr4d 2787 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((!‘𝑛) / ((√‘((2 · π) · 𝑛)) · ((𝑛 / e)↑𝑛))) = (((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) / 𝐶))
21898ancli 548 . . . . . . . 8 (𝑛 ∈ ℕ → (𝑛 ∈ ℕ ∧ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) ∈ ℂ))
219218adantl 481 . . . . . . 7 ((𝜑𝑛 ∈ ℕ) → (𝑛 ∈ ℕ ∧ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) ∈ ℂ))
220219, 99syl 17 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) = ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
221220eqcomd 2743 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) = (𝐴𝑛))
222221oveq1d 7446 . . . 4 ((𝜑𝑛 ∈ ℕ) → (((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) / 𝐶) = ((𝐴𝑛) / 𝐶))
22325, 217, 2223eqtrd 2781 . . 3 ((𝜑𝑛 ∈ ℕ) → ((!‘𝑛) / (𝑆𝑛)) = ((𝐴𝑛) / 𝐶))
2241, 223mpteq2da 5240 . 2 (𝜑 → (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆𝑛))) = (𝑛 ∈ ℕ ↦ ((𝐴𝑛) / 𝐶)))
225101adantl 481 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝐴𝑛) ∈ ℂ)
226225, 170, 215divrec2d 12047 . . . 4 ((𝜑𝑛 ∈ ℕ) → ((𝐴𝑛) / 𝐶) = ((1 / 𝐶) · (𝐴𝑛)))
2271, 226mpteq2da 5240 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ ((𝐴𝑛) / 𝐶)) = (𝑛 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑛))))
228146, 214reccld 12036 . . . . 5 (𝜑 → (1 / 𝐶) ∈ ℂ)
22981mptex 7243 . . . . . 6 (𝑛 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑛))) ∈ V
230229a1i 11 . . . . 5 (𝜑 → (𝑛 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑛))) ∈ V)
23143a1i 11 . . . . . . . 8 (𝑘 ∈ ℕ → 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)))))
232 simpr 484 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → 𝑛 = 𝑘)
233232fveq2d 6910 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (!‘𝑛) = (!‘𝑘))
234232oveq2d 7447 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (2 · 𝑛) = (2 · 𝑘))
235234fveq2d 6910 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (√‘(2 · 𝑛)) = (√‘(2 · 𝑘)))
236232oveq1d 7446 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → (𝑛 / e) = (𝑘 / e))
237236, 232oveq12d 7449 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((𝑛 / e)↑𝑛) = ((𝑘 / e)↑𝑘))
238235, 237oveq12d 7449 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛)) = ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)))
239233, 238oveq12d 7449 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝑛 = 𝑘) → ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))) = ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))))
240 id 22 . . . . . . . 8 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ)
241 nnnn0 12533 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
242 faccl 14322 . . . . . . . . . 10 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
243 nncn 12274 . . . . . . . . . 10 ((!‘𝑘) ∈ ℕ → (!‘𝑘) ∈ ℂ)
244241, 242, 2433syl 18 . . . . . . . . 9 (𝑘 ∈ ℕ → (!‘𝑘) ∈ ℂ)
245 2cnd 12344 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 2 ∈ ℂ)
246 nncn 12274 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
247245, 246mulcld 11281 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℂ)
248247sqrtcld 15476 . . . . . . . . . 10 (𝑘 ∈ ℕ → (√‘(2 · 𝑘)) ∈ ℂ)
24913a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → e ∈ ℂ)
25016a1i 11 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → e ≠ 0)
251246, 249, 250divcld 12043 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝑘 / e) ∈ ℂ)
252251, 241expcld 14186 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((𝑘 / e)↑𝑘) ∈ ℂ)
253248, 252mulcld 11281 . . . . . . . . 9 (𝑘 ∈ ℕ → ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)) ∈ ℂ)
25452a1i 11 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 2 ∈ ℝ+)
255 nnrp 13046 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → 𝑘 ∈ ℝ+)
256254, 255rpmulcld 13093 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (2 · 𝑘) ∈ ℝ+)
257256sqrtgt0d 15451 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 0 < (√‘(2 · 𝑘)))
258257gt0ne0d 11827 . . . . . . . . . 10 (𝑘 ∈ ℕ → (√‘(2 · 𝑘)) ≠ 0)
259 nnne0 12300 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ≠ 0)
260246, 249, 259, 250divne0d 12059 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝑘 / e) ≠ 0)
261 nnz 12634 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℤ)
262251, 260, 261expne0d 14192 . . . . . . . . . 10 (𝑘 ∈ ℕ → ((𝑘 / e)↑𝑘) ≠ 0)
263248, 252, 258, 262mulne0d 11915 . . . . . . . . 9 (𝑘 ∈ ℕ → ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘)) ≠ 0)
264244, 253, 263divcld 12043 . . . . . . . 8 (𝑘 ∈ ℕ → ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))) ∈ ℂ)
265231, 239, 240, 264fvmptd 7023 . . . . . . 7 (𝑘 ∈ ℕ → (𝐴𝑘) = ((!‘𝑘) / ((√‘(2 · 𝑘)) · ((𝑘 / e)↑𝑘))))
266265, 264eqeltrd 2841 . . . . . 6 (𝑘 ∈ ℕ → (𝐴𝑘) ∈ ℂ)
267266adantl 481 . . . . 5 ((𝜑𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℂ)
268 nfcv 2905 . . . . . . . . 9 𝑘((1 / 𝐶) · (𝐴𝑛))
269 nfcv 2905 . . . . . . . . . . 11 𝑛1
270 nfcv 2905 . . . . . . . . . . 11 𝑛 /
271 nfcv 2905 . . . . . . . . . . 11 𝑛𝐶
272269, 270, 271nfov 7461 . . . . . . . . . 10 𝑛(1 / 𝐶)
273 nfcv 2905 . . . . . . . . . 10 𝑛 ·
274 nfcv 2905 . . . . . . . . . . 11 𝑛𝑘
27545, 274nffv 6916 . . . . . . . . . 10 𝑛(𝐴𝑘)
276272, 273, 275nfov 7461 . . . . . . . . 9 𝑛((1 / 𝐶) · (𝐴𝑘))
277 fveq2 6906 . . . . . . . . . 10 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
278277oveq2d 7447 . . . . . . . . 9 (𝑛 = 𝑘 → ((1 / 𝐶) · (𝐴𝑛)) = ((1 / 𝐶) · (𝐴𝑘)))
279268, 276, 278cbvmpt 5253 . . . . . . . 8 (𝑛 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑛))) = (𝑘 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑘)))
280279a1i 11 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → (𝑛 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑛))) = (𝑘 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑘))))
281280fveq1d 6908 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑛)))‘𝑘) = ((𝑘 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑘)))‘𝑘))
282 simpr 484 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → 𝑘 ∈ ℕ)
283146adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 𝐶 ∈ ℂ)
284214adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ ℕ) → 𝐶 ≠ 0)
285283, 284reccld 12036 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ) → (1 / 𝐶) ∈ ℂ)
286285, 267mulcld 11281 . . . . . . 7 ((𝜑𝑘 ∈ ℕ) → ((1 / 𝐶) · (𝐴𝑘)) ∈ ℂ)
287 eqid 2737 . . . . . . . 8 (𝑘 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑘))) = (𝑘 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑘)))
288287fvmpt2 7027 . . . . . . 7 ((𝑘 ∈ ℕ ∧ ((1 / 𝐶) · (𝐴𝑘)) ∈ ℂ) → ((𝑘 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑘)))‘𝑘) = ((1 / 𝐶) · (𝐴𝑘)))
289282, 286, 288syl2anc 584 . . . . . 6 ((𝜑𝑘 ∈ ℕ) → ((𝑘 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑘)))‘𝑘) = ((1 / 𝐶) · (𝐴𝑘)))
290281, 289eqtrd 2777 . . . . 5 ((𝜑𝑘 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑛)))‘𝑘) = ((1 / 𝐶) · (𝐴𝑘)))
29141, 42, 79, 228, 230, 267, 290climmulc2 15673 . . . 4 (𝜑 → (𝑛 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑛))) ⇝ ((1 / 𝐶) · 𝐶))
292146, 214recid2d 12039 . . . 4 (𝜑 → ((1 / 𝐶) · 𝐶) = 1)
293291, 292breqtrd 5169 . . 3 (𝜑 → (𝑛 ∈ ℕ ↦ ((1 / 𝐶) · (𝐴𝑛))) ⇝ 1)
294227, 293eqbrtrd 5165 . 2 (𝜑 → (𝑛 ∈ ℕ ↦ ((𝐴𝑛) / 𝐶)) ⇝ 1)
295224, 294eqbrtrd 5165 1 (𝜑 → (𝑛 ∈ ℕ ↦ ((!‘𝑛) / (𝑆𝑛))) ⇝ 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wnf 1783  wcel 2108  wne 2940  Vcvv 3480   class class class wbr 5143  cmpt 5225  wf 6557  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  cn 12266  2c2 12321  4c4 12323  0cn0 12526  cz 12613  +crp 13034  cexp 14102  !cfa 14312  csqrt 15272  cli 15520  eceu 16098  πcpi 16102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-symdif 4253  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-e 16104  df-sin 16105  df-cos 16106  df-pi 16108  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-ovol 25499  df-vol 25500  df-mbf 25654  df-itg1 25655  df-itg2 25656  df-ibl 25657  df-itg 25658  df-0p 25705  df-limc 25901  df-dv 25902
This theorem is referenced by:  stirling  46104
  Copyright terms: Public domain W3C validator