MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pythagtriplem13 Structured version   Visualization version   GIF version

Theorem pythagtriplem13 16787
Description: Lemma for pythagtrip 16794. Show that 𝑁 (which will eventually be closely related to the 𝑛 in the final statement) is a natural. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypothesis
Ref Expression
pythagtriplem13.1 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)
Assertion
Ref Expression
pythagtriplem13 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝑁 ∈ ℕ)

Proof of Theorem pythagtriplem13
StepHypRef Expression
1 pythagtriplem13.1 . 2 𝑁 = (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)
2 pythagtriplem9 16784 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 + 𝐵)) ∈ ℕ)
32nnzd 12607 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 + 𝐵)) ∈ ℤ)
4 simp3r 1200 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ¬ 2 ∥ 𝐴)
5 2z 12616 . . . . . . . . . 10 2 ∈ ℤ
6 simp3 1136 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈ ℕ)
7 simp2 1135 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈ ℕ)
86, 7nnaddcld 12286 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℕ)
98nnzd 12607 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℤ)
1093ad2ant1 1131 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐵) ∈ ℤ)
11 nnz 12601 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
12113ad2ant1 1131 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐴 ∈ ℤ)
13123ad2ant1 1131 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐴 ∈ ℤ)
14 dvdsgcdb 16512 . . . . . . . . . 10 ((2 ∈ ℤ ∧ (𝐶 + 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((2 ∥ (𝐶 + 𝐵) ∧ 2 ∥ 𝐴) ↔ 2 ∥ ((𝐶 + 𝐵) gcd 𝐴)))
155, 10, 13, 14mp3an2i 1463 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((2 ∥ (𝐶 + 𝐵) ∧ 2 ∥ 𝐴) ↔ 2 ∥ ((𝐶 + 𝐵) gcd 𝐴)))
1615biimpar 477 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 2 ∥ ((𝐶 + 𝐵) gcd 𝐴)) → (2 ∥ (𝐶 + 𝐵) ∧ 2 ∥ 𝐴))
1716simprd 495 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 2 ∥ ((𝐶 + 𝐵) gcd 𝐴)) → 2 ∥ 𝐴)
184, 17mtand 815 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ¬ 2 ∥ ((𝐶 + 𝐵) gcd 𝐴))
19 pythagtriplem7 16782 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶 + 𝐵)) = ((𝐶 + 𝐵) gcd 𝐴))
2019breq2d 5154 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 ∥ (√‘(𝐶 + 𝐵)) ↔ 2 ∥ ((𝐶 + 𝐵) gcd 𝐴)))
2118, 20mtbird 325 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ¬ 2 ∥ (√‘(𝐶 + 𝐵)))
22 pythagtriplem8 16783 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶𝐵)) ∈ ℕ)
2322nnzd 12607 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶𝐵)) ∈ ℤ)
24 nnz 12601 . . . . . . . . . . . . 13 (𝐶 ∈ ℕ → 𝐶 ∈ ℤ)
25243ad2ant3 1133 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈ ℤ)
26 nnz 12601 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
27263ad2ant2 1132 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈ ℤ)
2825, 27zsubcld 12693 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶𝐵) ∈ ℤ)
29283ad2ant1 1131 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶𝐵) ∈ ℤ)
30 dvdsgcdb 16512 . . . . . . . . . 10 ((2 ∈ ℤ ∧ (𝐶𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((2 ∥ (𝐶𝐵) ∧ 2 ∥ 𝐴) ↔ 2 ∥ ((𝐶𝐵) gcd 𝐴)))
315, 29, 13, 30mp3an2i 1463 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((2 ∥ (𝐶𝐵) ∧ 2 ∥ 𝐴) ↔ 2 ∥ ((𝐶𝐵) gcd 𝐴)))
3231biimpar 477 . . . . . . . 8 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 2 ∥ ((𝐶𝐵) gcd 𝐴)) → (2 ∥ (𝐶𝐵) ∧ 2 ∥ 𝐴))
3332simprd 495 . . . . . . 7 ((((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) ∧ 2 ∥ ((𝐶𝐵) gcd 𝐴)) → 2 ∥ 𝐴)
344, 33mtand 815 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ¬ 2 ∥ ((𝐶𝐵) gcd 𝐴))
35 pythagtriplem6 16781 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶𝐵)) = ((𝐶𝐵) gcd 𝐴))
3635breq2d 5154 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 ∥ (√‘(𝐶𝐵)) ↔ 2 ∥ ((𝐶𝐵) gcd 𝐴)))
3734, 36mtbird 325 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ¬ 2 ∥ (√‘(𝐶𝐵)))
38 omoe 16332 . . . . 5 ((((√‘(𝐶 + 𝐵)) ∈ ℤ ∧ ¬ 2 ∥ (√‘(𝐶 + 𝐵))) ∧ ((√‘(𝐶𝐵)) ∈ ℤ ∧ ¬ 2 ∥ (√‘(𝐶𝐵)))) → 2 ∥ ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))))
393, 21, 23, 37, 38syl22anc 838 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 2 ∥ ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))))
4028zred 12688 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶𝐵) ∈ ℝ)
41403ad2ant1 1131 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶𝐵) ∈ ℝ)
42 simp13 1203 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 ∈ ℕ)
4342nnred 12249 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 ∈ ℝ)
448nnred 12249 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐶 + 𝐵) ∈ ℝ)
45443ad2ant1 1131 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶 + 𝐵) ∈ ℝ)
46 nnrp 13009 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ+)
47463ad2ant2 1132 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈ ℝ+)
48473ad2ant1 1131 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈ ℝ+)
4943, 48ltsubrpd 13072 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶𝐵) < 𝐶)
50 nngt0 12265 . . . . . . . . . . . 12 (𝐵 ∈ ℕ → 0 < 𝐵)
51503ad2ant2 1132 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 < 𝐵)
52513ad2ant1 1131 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 < 𝐵)
53 simp12 1202 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈ ℕ)
5453nnred 12249 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐵 ∈ ℝ)
5554, 43ltaddposd 11820 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (0 < 𝐵𝐶 < (𝐶 + 𝐵)))
5652, 55mpbid 231 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝐶 < (𝐶 + 𝐵))
5741, 43, 45, 49, 56lttrd 11397 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝐶𝐵) < (𝐶 + 𝐵))
58 pythagtriplem10 16780 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → 0 < (𝐶𝐵))
59583adant3 1130 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 < (𝐶𝐵))
60 0re 11238 . . . . . . . . . . 11 0 ∈ ℝ
61 ltle 11324 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ (𝐶𝐵) ∈ ℝ) → (0 < (𝐶𝐵) → 0 ≤ (𝐶𝐵)))
6260, 61mpan 689 . . . . . . . . . 10 ((𝐶𝐵) ∈ ℝ → (0 < (𝐶𝐵) → 0 ≤ (𝐶𝐵)))
6341, 59, 62sylc 65 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 ≤ (𝐶𝐵))
64 nngt0 12265 . . . . . . . . . . . . 13 (𝐶 ∈ ℕ → 0 < 𝐶)
65643ad2ant3 1133 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 < 𝐶)
66653ad2ant1 1131 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 < 𝐶)
6743, 54, 66, 52addgt0d 11811 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 < (𝐶 + 𝐵))
68 ltle 11324 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ (𝐶 + 𝐵) ∈ ℝ) → (0 < (𝐶 + 𝐵) → 0 ≤ (𝐶 + 𝐵)))
6960, 68mpan 689 . . . . . . . . . 10 ((𝐶 + 𝐵) ∈ ℝ → (0 < (𝐶 + 𝐵) → 0 ≤ (𝐶 + 𝐵)))
7045, 67, 69sylc 65 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 ≤ (𝐶 + 𝐵))
7141, 63, 45, 70sqrtltd 15398 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((𝐶𝐵) < (𝐶 + 𝐵) ↔ (√‘(𝐶𝐵)) < (√‘(𝐶 + 𝐵))))
7257, 71mpbid 231 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (√‘(𝐶𝐵)) < (√‘(𝐶 + 𝐵)))
73 nnsub 12278 . . . . . . . 8 (((√‘(𝐶𝐵)) ∈ ℕ ∧ (√‘(𝐶 + 𝐵)) ∈ ℕ) → ((√‘(𝐶𝐵)) < (√‘(𝐶 + 𝐵)) ↔ ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) ∈ ℕ))
7422, 2, 73syl2anc 583 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶𝐵)) < (√‘(𝐶 + 𝐵)) ↔ ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) ∈ ℕ))
7572, 74mpbid 231 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) ∈ ℕ)
7675nnzd 12607 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) ∈ ℤ)
77 evend2 16325 . . . . 5 (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) ∈ ℤ → (2 ∥ ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) ↔ (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) ∈ ℤ))
7876, 77syl 17 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (2 ∥ ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) ↔ (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) ∈ ℤ))
7939, 78mpbid 231 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) ∈ ℤ)
8075nngt0d 12283 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 < ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))))
8175nnred 12249 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) ∈ ℝ)
82 halfpos2 12463 . . . . 5 (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) ∈ ℝ → (0 < ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) ↔ 0 < (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)))
8381, 82syl 17 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (0 < ((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) ↔ 0 < (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)))
8480, 83mpbid 231 . . 3 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 0 < (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2))
85 elnnz 12590 . . 3 ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) ∈ ℕ ↔ ((((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) ∈ ℤ ∧ 0 < (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2)))
8679, 84, 85sylanbrc 582 . 2 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → (((√‘(𝐶 + 𝐵)) − (√‘(𝐶𝐵))) / 2) ∈ ℕ)
871, 86eqeltrid 2832 1 (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ((𝐴 gcd 𝐵) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝑁 ∈ ℕ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099   class class class wbr 5142  cfv 6542  (class class class)co 7414  cr 11129  0cc0 11130  1c1 11131   + caddc 11133   < clt 11270  cle 11271  cmin 11466   / cdiv 11893  cn 12234  2c2 12289  cz 12580  +crp 12998  cexp 14050  csqrt 15204  cdvds 16222   gcd cgcd 16460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207  ax-pre-sup 11208
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-sup 9457  df-inf 9458  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-div 11894  df-nn 12235  df-2 12297  df-3 12298  df-n0 12495  df-z 12581  df-uz 12845  df-rp 12999  df-fz 13509  df-fl 13781  df-mod 13859  df-seq 13991  df-exp 14051  df-cj 15070  df-re 15071  df-im 15072  df-sqrt 15206  df-abs 15207  df-dvds 16223  df-gcd 16461  df-prm 16634
This theorem is referenced by:  pythagtriplem18  16792  flt4lem5  41996  flt4lem5a  41998  flt4lem5c  42000  flt4lem5d  42001  flt4lem5e  42002
  Copyright terms: Public domain W3C validator