Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 = wceq 1541
∈ wcel 2106 (class class class)co 7411
ℂcc 11110 + caddc 11115 − cmin 11448 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913
ax-6 1971 ax-7 2011 ax-8 2108
ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 |
This theorem depends on definitions:
df-bi 206 df-an 397
df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-ltxr 11257 df-sub 11450 |
This theorem is referenced by: mvlraddd
11628 mvlladdd
11629 mvrraddd
11630 addlsub
11634 pnpncand
11639 pncan1
11642 eluzmn
12833 icoshftf1o
13455 xov1plusxeqvd
13479 zesq
14193 hashdifsnp1
14461 ccatval3
14533 fsump1
15706 fsumrev2
15732 fprodp1
15917 risefacp1
15977 fallfacp1
15978 sadcp1
16400 smupp1
16425 hashdvds
16712 pythagtriplem4
16756 pythagtriplem6
16758 pythagtriplem7
16759 pythagtriplem12
16763 pythagtriplem14
16765 pcqdiv
16794 mulgdirlem
19021 cayhamlem1
22588 pjthlem1
25178 ovolicopnf
25265 i1faddlem
25434 itg1addlem4
25440 itg1addlem4OLD
25441 itgpowd
25791 taylthlem2
26110 ulmshft
26126 efif1olem2
26276 efif1olem4
26278 logdiflbnd
26723 lgamgulmlem2
26758 lgamcvg2
26783 relgamcl
26790 ftalem2
26802 mulog2sumlem1
27261 mulog2sumlem3
27263 pntrlog2bndlem2
27305 pntrlog2bndlem4
27307 pntrlog2bndlem5
27308 colinearalglem4
28422 axpaschlem
28453 wwlksnred
29401 wwlksnext
29402 wwlksnredwwlkn
29404 wwlksnextproplem2
29419 clwlkclwwlklem2
29508 clwlkclwwlklem3
29509 clwwlkf
29555 wwlksext2clwwlk
29565 eucrct2eupth
29753 numclwwlk2lem1
29884 numclwlk2lem2f
29885 pjhthlem1
30899 fzm1ne1
32255 fzom1ne1
32267 wrdt2ind
32372 cshwrnid
32380 psgnfzto1stlem
32517 cycpmco2lem4
32546 cycpmco2lem5
32547 cycpmco2lem7
32549 madjusmdetlem2
33094 dya2icoseg
33562 fibp1
33686 ballotlemfc0
33777 ballotlemfcc
33778 ballotlemsgt1
33795 ballotlemsel1i
33797 ballotlemsima
33800 ballotlem1ri
33819 signstfvn
33866 reprsuc
33913 bcprod
35000 bccolsum
35001 unblimceq0
35686 knoppndvlem6
35696 bj-bary1lem1
36495 sin2h
36781 itg2addnclem
36842 itg2addnclem3
36844 areacirclem4
36882 ssbnd
36959 lcmineqlem10
41209 lcmineqlem11
41210 lcmineqlem18
41217 lcmineqlem19
41218 sticksstones12a
41279 sticksstones12
41280 metakunt12
41302 mvrrsubd
41489 fz1sump1
41510 oddnumth
41511 dffltz
41678 jm2.19lem4
42033 jm2.23
42037 int-eqmvtd
43243 hashnzfzclim
43383 dvradcnv2
43408 binomcxplemnn0
43410 binomcxplemnotnn0
43417 nnsplit
44367 iccshift
44530 iooshift
44534 climinf
44621 limcperiod
44643 0ellimcdiv
44664 cncfshift
44889 cncfperiod
44894 dvdsn1add
44954 dvnmul
44958 dvnprodlem1
44961 itgiccshift
44995 itgperiod
44996 stoweidlem17
45032 wallispilem4
45083 wallispilem5
45084 stirlinglem1
45089 stirlinglem5
45093 stirlinglem6
45094 stirlinglem10
45098 dirkertrigeqlem2
45114 fourierdlem14
45136 fourierdlem19
45141 fourierdlem41
45163 fourierdlem42
45164 fourierdlem48
45169 fourierdlem49
45170 fourierdlem50
45171 fourierdlem64
45185 fourierdlem74
45195 fourierdlem75
45196 fourierdlem81
45202 fourierdlem92
45213 fourierdlem97
45218 fourierdlem103
45224 fourierdlem104
45225 fourierdlem107
45228 etransclem9
45258 nnfoctbdjlem
45470 fldivmod
47292 |