Colors of
variables: wff
setvar class |
Syntax hints:
→ wi 4 = wceq 1539
∈ wcel 2104 (class class class)co 7411
ℂcc 11110 + caddc 11115 − cmin 11448 |
This theorem was proved from axioms:
ax-mp 5 ax-1 6 ax-2 7
ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911
ax-6 1969 ax-7 2009 ax-8 2106
ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 |
This theorem depends on definitions:
df-bi 206 df-an 395
df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-ltxr 11257 df-sub 11450 |
This theorem is referenced by: mvlraddd
11628 mvlladdd
11629 mvrraddd
11630 addlsub
11634 pnpncand
11639 pncan1
11642 eluzmn
12833 icoshftf1o
13455 xov1plusxeqvd
13479 zesq
14193 hashdifsnp1
14461 ccatval3
14533 fsump1
15706 fsumrev2
15732 fprodp1
15917 risefacp1
15977 fallfacp1
15978 sadcp1
16400 smupp1
16425 hashdvds
16712 pythagtriplem4
16756 pythagtriplem6
16758 pythagtriplem7
16759 pythagtriplem12
16763 pythagtriplem14
16765 pcqdiv
16794 mulgdirlem
19021 cayhamlem1
22588 pjthlem1
25185 ovolicopnf
25273 i1faddlem
25442 itg1addlem4
25448 itg1addlem4OLD
25449 itgpowd
25802 taylthlem2
26122 ulmshft
26138 efif1olem2
26288 efif1olem4
26290 logdiflbnd
26735 lgamgulmlem2
26770 lgamcvg2
26795 relgamcl
26802 ftalem2
26814 mulog2sumlem1
27273 mulog2sumlem3
27275 pntrlog2bndlem2
27317 pntrlog2bndlem4
27319 pntrlog2bndlem5
27320 colinearalglem4
28434 axpaschlem
28465 wwlksnred
29413 wwlksnext
29414 wwlksnredwwlkn
29416 wwlksnextproplem2
29431 clwlkclwwlklem2
29520 clwlkclwwlklem3
29521 clwwlkf
29567 wwlksext2clwwlk
29577 eucrct2eupth
29765 numclwwlk2lem1
29896 numclwlk2lem2f
29897 pjhthlem1
30911 fzm1ne1
32267 fzom1ne1
32279 wrdt2ind
32384 cshwrnid
32392 psgnfzto1stlem
32529 cycpmco2lem4
32558 cycpmco2lem5
32559 cycpmco2lem7
32561 madjusmdetlem2
33106 dya2icoseg
33574 fibp1
33698 ballotlemfc0
33789 ballotlemfcc
33790 ballotlemsgt1
33807 ballotlemsel1i
33809 ballotlemsima
33812 ballotlem1ri
33831 signstfvn
33878 reprsuc
33925 bcprod
35012 bccolsum
35013 unblimceq0
35686 knoppndvlem6
35696 bj-bary1lem1
36495 sin2h
36781 itg2addnclem
36842 itg2addnclem3
36844 areacirclem4
36882 ssbnd
36959 lcmineqlem10
41209 lcmineqlem11
41210 lcmineqlem18
41217 lcmineqlem19
41218 sticksstones12a
41279 sticksstones12
41280 metakunt12
41302 mvrrsubd
41489 fz1sump1
41510 oddnumth
41511 dffltz
41678 jm2.19lem4
42033 jm2.23
42037 int-eqmvtd
43243 hashnzfzclim
43383 dvradcnv2
43408 binomcxplemnn0
43410 binomcxplemnotnn0
43417 nnsplit
44366 iccshift
44529 iooshift
44533 climinf
44620 limcperiod
44642 0ellimcdiv
44663 cncfshift
44888 cncfperiod
44893 dvdsn1add
44953 dvnmul
44957 dvnprodlem1
44960 itgiccshift
44994 itgperiod
44995 stoweidlem17
45031 wallispilem4
45082 wallispilem5
45083 stirlinglem1
45088 stirlinglem5
45092 stirlinglem6
45093 stirlinglem10
45097 dirkertrigeqlem2
45113 fourierdlem14
45135 fourierdlem19
45140 fourierdlem41
45162 fourierdlem42
45163 fourierdlem48
45168 fourierdlem49
45169 fourierdlem50
45170 fourierdlem64
45184 fourierdlem74
45194 fourierdlem75
45195 fourierdlem81
45201 fourierdlem92
45212 fourierdlem97
45217 fourierdlem103
45223 fourierdlem104
45224 fourierdlem107
45227 etransclem9
45257 nnfoctbdjlem
45469 fldivmod
47291 |