MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0ob Structured version   Visualization version   GIF version

Theorem nn0ob 16331
Description: Alternate characterizations of an odd nonnegative integer. (Contributed by AV, 4-Jun-2020.)
Assertion
Ref Expression
nn0ob (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 ↔ ((𝑁 − 1) / 2) ∈ ℕ0))

Proof of Theorem nn0ob
StepHypRef Expression
1 nn0o 16330 . 2 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0)
2 nn0cn 12486 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
3 xp1d2m1eqxm1d2 12470 . . . . . . 7 (𝑁 ∈ ℂ → (((𝑁 + 1) / 2) − 1) = ((𝑁 − 1) / 2))
43eqcomd 2738 . . . . . 6 (𝑁 ∈ ℂ → ((𝑁 − 1) / 2) = (((𝑁 + 1) / 2) − 1))
52, 4syl 17 . . . . 5 (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) = (((𝑁 + 1) / 2) − 1))
6 peano2cnm 11530 . . . . . . . 8 (𝑁 ∈ ℂ → (𝑁 − 1) ∈ ℂ)
72, 6syl 17 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 − 1) ∈ ℂ)
87halfcld 12461 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 − 1) / 2) ∈ ℂ)
9 1cnd 11213 . . . . . 6 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
10 peano2nn0 12516 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
1110nn0cnd 12538 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
1211halfcld 12461 . . . . . 6 (𝑁 ∈ ℕ0 → ((𝑁 + 1) / 2) ∈ ℂ)
138, 9, 12addlsub 11634 . . . . 5 (𝑁 ∈ ℕ0 → ((((𝑁 − 1) / 2) + 1) = ((𝑁 + 1) / 2) ↔ ((𝑁 − 1) / 2) = (((𝑁 + 1) / 2) − 1)))
145, 13mpbird 256 . . . 4 (𝑁 ∈ ℕ0 → (((𝑁 − 1) / 2) + 1) = ((𝑁 + 1) / 2))
1514adantr 481 . . 3 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → (((𝑁 − 1) / 2) + 1) = ((𝑁 + 1) / 2))
16 peano2nn0 12516 . . . 4 (((𝑁 − 1) / 2) ∈ ℕ0 → (((𝑁 − 1) / 2) + 1) ∈ ℕ0)
1716adantl 482 . . 3 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → (((𝑁 − 1) / 2) + 1) ∈ ℕ0)
1815, 17eqeltrrd 2834 . 2 ((𝑁 ∈ ℕ0 ∧ ((𝑁 − 1) / 2) ∈ ℕ0) → ((𝑁 + 1) / 2) ∈ ℕ0)
191, 18impbida 799 1 (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 ↔ ((𝑁 − 1) / 2) ∈ ℕ0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  (class class class)co 7411  cc 11110  1c1 11113   + caddc 11115  cmin 11448   / cdiv 11875  2c2 12271  0cn0 12476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-n0 12477  df-z 12563  df-uz 12827  df-rp 12979
This theorem is referenced by:  nn0oddm1d2  16332  nn0sumshdiglemB  47394
  Copyright terms: Public domain W3C validator