| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > leftssno | Structured version Visualization version GIF version | ||
| Description: The left set of a surreal number is a subset of the surreals. (Contributed by Scott Fenton, 9-Oct-2024.) |
| Ref | Expression |
|---|---|
| leftssno | ⊢ ( L ‘𝐴) ⊆ No |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leftssold 27766 | . 2 ⊢ ( L ‘𝐴) ⊆ ( O ‘( bday ‘𝐴)) | |
| 2 | oldssno 27745 | . 2 ⊢ ( O ‘( bday ‘𝐴)) ⊆ No | |
| 3 | 1, 2 | sstri 3953 | 1 ⊢ ( L ‘𝐴) ⊆ No |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3911 ‘cfv 6499 No csur 27527 bday cbday 27529 O cold 27727 L cleft 27729 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-1o 8411 df-2o 8412 df-no 27530 df-slt 27531 df-bday 27532 df-sslt 27669 df-scut 27671 df-made 27731 df-old 27732 df-left 27734 |
| This theorem is referenced by: cofcutr 27808 cofcutrtime 27811 lrrecpred 27827 addsproplem2 27853 sleadd1 27872 addsuniflem 27884 addsbdaylem 27899 addsbday 27900 negsproplem2 27911 negsproplem4 27913 negsproplem6 27915 negsid 27923 negsunif 27937 mulsrid 27992 mulsproplem5 27999 mulsproplem6 28000 mulsproplem7 28001 mulsproplem8 28002 mulscom 28018 mulsuniflem 28028 addsdilem3 28032 addsdilem4 28033 mulsasslem3 28044 precsexlem8 28092 precsexlem9 28093 precsexlem11 28095 elons2 28135 onscutlt 28141 onaddscl 28150 onmulscl 28151 |
| Copyright terms: Public domain | W3C validator |