![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > leftssno | Structured version Visualization version GIF version |
Description: The left set of a surreal number is a subset of the surreals. (Contributed by Scott Fenton, 9-Oct-2024.) |
Ref | Expression |
---|---|
leftssno | ⊢ ( L ‘𝐴) ⊆ No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leftssold 27905 | . 2 ⊢ ( L ‘𝐴) ⊆ ( O ‘( bday ‘𝐴)) | |
2 | oldssno 27888 | . 2 ⊢ ( O ‘( bday ‘𝐴)) ⊆ No | |
3 | 1, 2 | sstri 3989 | 1 ⊢ ( L ‘𝐴) ⊆ No |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3947 ‘cfv 6556 No csur 27672 bday cbday 27674 O cold 27870 L cleft 27872 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5292 ax-sep 5306 ax-nul 5313 ax-pow 5371 ax-pr 5435 ax-un 7748 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-uni 4916 df-int 4957 df-iun 5005 df-br 5156 df-opab 5218 df-mpt 5239 df-tr 5273 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5639 df-we 5641 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6314 df-ord 6381 df-on 6382 df-suc 6384 df-iota 6508 df-fun 6558 df-fn 6559 df-f 6560 df-f1 6561 df-fo 6562 df-f1o 6563 df-fv 6564 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-2nd 8006 df-frecs 8298 df-wrecs 8329 df-recs 8403 df-1o 8498 df-2o 8499 df-no 27675 df-slt 27676 df-bday 27677 df-sslt 27814 df-scut 27816 df-made 27874 df-old 27875 df-left 27877 |
This theorem is referenced by: cofcutr 27944 cofcutrtime 27947 lrrecpred 27961 addsproplem2 27987 sleadd1 28006 addsuniflem 28018 negsproplem2 28041 negsproplem4 28043 negsproplem6 28045 negsid 28053 negsunif 28067 mulsrid 28117 mulsproplem5 28124 mulsproplem6 28125 mulsproplem7 28126 mulsproplem8 28127 mulscom 28143 mulsuniflem 28153 addsdilem3 28157 addsdilem4 28158 mulsasslem3 28169 precsexlem8 28216 precsexlem9 28217 precsexlem11 28219 elons2 28255 |
Copyright terms: Public domain | W3C validator |