![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > leftssno | Structured version Visualization version GIF version |
Description: The left set of a surreal number is a subset of the surreals. (Contributed by Scott Fenton, 9-Oct-2024.) |
Ref | Expression |
---|---|
leftssno | ⊢ ( L ‘𝐴) ⊆ No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leftssold 27931 | . 2 ⊢ ( L ‘𝐴) ⊆ ( O ‘( bday ‘𝐴)) | |
2 | oldssno 27914 | . 2 ⊢ ( O ‘( bday ‘𝐴)) ⊆ No | |
3 | 1, 2 | sstri 4004 | 1 ⊢ ( L ‘𝐴) ⊆ No |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3962 ‘cfv 6562 No csur 27698 bday cbday 27700 O cold 27896 L cleft 27898 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-1o 8504 df-2o 8505 df-no 27701 df-slt 27702 df-bday 27703 df-sslt 27840 df-scut 27842 df-made 27900 df-old 27901 df-left 27903 |
This theorem is referenced by: cofcutr 27972 cofcutrtime 27975 lrrecpred 27991 addsproplem2 28017 sleadd1 28036 addsuniflem 28048 addsbdaylem 28063 addsbday 28064 negsproplem2 28075 negsproplem4 28077 negsproplem6 28079 negsid 28087 negsunif 28101 mulsrid 28153 mulsproplem5 28160 mulsproplem6 28161 mulsproplem7 28162 mulsproplem8 28163 mulscom 28179 mulsuniflem 28189 addsdilem3 28193 addsdilem4 28194 mulsasslem3 28205 precsexlem8 28252 precsexlem9 28253 precsexlem11 28255 elons2 28295 onaddscl 28300 onmulscl 28301 |
Copyright terms: Public domain | W3C validator |