Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > leftssno | Structured version Visualization version GIF version |
Description: The left set of a surreal number is a subset of the surreals. (Contributed by Scott Fenton, 9-Oct-2024.) |
Ref | Expression |
---|---|
leftssno | ⊢ ( L ‘𝐴) ⊆ No |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leftssold 34089 | . 2 ⊢ ( L ‘𝐴) ⊆ ( O ‘( bday ‘𝐴)) | |
2 | oldssno 34073 | . 2 ⊢ ( O ‘( bday ‘𝐴)) ⊆ No | |
3 | 1, 2 | sstri 3932 | 1 ⊢ ( L ‘𝐴) ⊆ No |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3889 ‘cfv 6447 No csur 33871 bday cbday 33873 O cold 34055 L cleft 34057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3222 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-pss 3908 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-tp 4569 df-op 4571 df-uni 4842 df-int 4883 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-tr 5195 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6206 df-ord 6273 df-on 6274 df-suc 6276 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-riota 7252 df-ov 7298 df-oprab 7299 df-mpo 7300 df-2nd 7852 df-frecs 8117 df-wrecs 8148 df-recs 8222 df-1o 8317 df-2o 8318 df-no 33874 df-slt 33875 df-bday 33876 df-sslt 34004 df-scut 34006 df-made 34059 df-old 34060 df-left 34062 |
This theorem is referenced by: cofcutr 34120 cofcutrtime 34121 lrrecpred 34129 addscllem1 34159 |
Copyright terms: Public domain | W3C validator |